The air pressure inside the balloon is: 0.1432 Pa
The formulas and procedures that we will use to solve this problem are:
Where:
- a = area of the sphere
- r = radius
- π = mathematical constant
- P = Pressure
- F = Force
- a = surface area
Information about the problem:
- r = 5.0 m
- F = 45 N
- 1 Pa = N/m²
- 1 N = kg * m/s²
- a=?
- P=?
Using the formula of the sphere area we get:
a = 4 * π * r²
a = 4 * 3.1416 * (5.0 m)²
a = 314.16 m²
Applying the pressure formula we get:
P = F/a
P = 45 N/314.16 m²
P = 0.1432 Pa
<h3>What is pressure?</h3>
It is a physical quantity that expresses the force applied on the area of a surface.
Learn more about pressure at: brainly.com/question/26269477
#SPJ4
Answer:
1.25 m/s
Explanation:
m1v1+m2v2=m1v1f+m2v2f
(1425*13)+(1175*0)=(1425*v1f)+(1175*14.25)
18525+0=1425(v1f)+16743.75
1781.25=1425(v1f)
v1f=1.25 m/s
Answer:
The heat causes the molecules on rubbing surfaces to move faster and have more energy.
In Newton's third law, the action and reaction forces D.)act on different objects
Explanation:
Newton's third law of motion states that:
<em>"When an object A exerts a force on object B (action force), then action B exerts an equal and opposite force (reaction force) on object A"</em>
It is important to note from the statement above that the action force and the reaction force always act on different objects. Let's take an example: a man pushing a box. We have:
- Action force: the force applied by the man on the box, forward
- Reaction force: the force applied by the box on the man, backward
As we can see from this example, the action force is applied on the box, while the reaction force is applied on the man: this means that the two forces do not act on the same object. This implies that whenever we draw the free-body diagram of the forces acting on an object, the action and reaction forces never appear in the same diagram, since they act on different objects.
Learn more about Newton's third law of motion:
brainly.com/question/11411375
#LearnwithBrainly