Answer:
3. less than the kinetic energy of thesilly putty before the collision.
Explanation:
This is because kinetic energy is dependent on the mass and velocity of an object. Mathematically, it is given as:
K. E. = ½*m*v²
Where m = mass
v = velocity
In the case of the silly putty, we know that the masses of the ball of silly putty and the bowling ball are conserved, hence, the kinetic energy depends solely on the velocity at which the object moves.
After the collision with the bowling ball, because of how heavy a bowling ball is, the speed of the silly putty and bowling ball will definitely be less than the speed of the silly putty before collision, i. e. u > v.
Hence, the kinetic energy after collision will be less than the kinetic energy before collision.
A). No. Condensation happens when you take heat out of a gas.
b). No. I'm not sure what transpiration is.
<u>c). Yes.</u> Evaporation happens when you add heat to a liquid.
d). No. Sublimation sometimes happens when you add heat to a solid.
The initial force between the two charges is given by:

where k is the Coulomb's constant, q1 and q2 the two charges, d their separation. Let's analyze now the other situations:
1. F
In this case, q1 is halved, q2 is doubled, but the distance between the charges remains d.
So, we have:

So, the new force is:

So the force has not changed.
2. F/4
In this case, q1 and q2 are unchanged. The distance between the charges is doubled to 2d.
So, we have:

So, the new force is:

So the force has decreased by a factor 4.
3. 6F
In this case, q1 is doubled and q2 is tripled. The distance between the charges remains d.
So, we have:

So, the new force is:

So the force has increased by a factor 6.
Answer:
D.-4.798m/s
Explanation:
Greetings !
Given values

Solve for V of the given expression
Firstly, recall the velocity-time equation

plug in known values to the equation

solve for final velocity

Hope it helps!