Answer:
Radiation heat energy transfer
Explanation:
The type of heat transfer from the Sun is radiation heat transfer, which is the transfer of heat through electromagnetic radiation
The distance of the Sun to the Earth is several million kilometers away, with the space between being composes of vacuum and the nuclear reaction in the Sun's core generates vast amount of electromagnetic radiation that is transferred all across the universe and reaches the Earth as visible light and radiant energy at the speed of light
The radiant energy transferred from the Sun heats up the Earth, including the car's interior.
Answer:
weight = 25*10 =250 N
Explanation:
g must be given in units of m/s^2
The weight of any type of body will be the product of his mass by the gravity
where:
m =mass [kg]
F = force [N] or [kg*m/s^2]
g = acceleration [m/s^2]
Answer
given,
current (I) = 16 mA
circumference of the circular loop (S)= 1.90 m
Magnetic field (B)= 0.790 T
S = 2 π r
1.9 = 2 π r
r = 0.3024 m
a) magnetic moment of loop
M= I A
M=
M=
M=
b) torque exerted in the loop



Answer:
Temperature increase = 2.1 [C]
Explanation:
We need to identify the initial data of the problem.
v = velocity of the copper sphere = 40 [m/s]
Cp = heat capacity = 387 [J/kg*C]
The most important data given is the fact that when the shock occurs kinetic energy is transformed into thermal energy, therefore it will have to be:
![E_{k}=Q\\ E_{k}= kinetic energy [J]\\Q=thermal energy [J]\\Re-employment values and equalizing equations\\\\\frac{1}{2} *m*v^{2}=m*C_{p}*dT \\The masses are canceled \\\\dT=\frac{v^{2}}{C_{p} *2} \\dT=2.1 [C]](https://tex.z-dn.net/?f=E_%7Bk%7D%3DQ%5C%5C%20E_%7Bk%7D%3D%20kinetic%20energy%20%5BJ%5D%5C%5CQ%3Dthermal%20energy%20%5BJ%5D%5C%5CRe-employment%20values%20and%20equalizing%20equations%5C%5C%5C%5C%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%3Dm%2AC_%7Bp%7D%2AdT%20%20%5C%5CThe%20masses%20are%20canceled%20%5C%5C%5C%5CdT%3D%5Cfrac%7Bv%5E%7B2%7D%7D%7BC_%7Bp%7D%20%2A2%7D%20%5C%5CdT%3D2.1%20%5BC%5D)
Answer:
a) When the sides of the joint are close together, the particles have more kinetic energy than they do when sides are farther apart.
Explanation: