Answer:
D.) 1m/s
Explanation:
Assume the initial angle of the swing is 12.8 degree with respect to the vertical. We can calculate the vertical distance from this initial point to the lowest point by first calculate the vertical distance from this point the the pivot point:

where L is the pendulum length
The vertical distance from the lowest point to the pivot point
is the pendulum length 2m
this means the vertical distance from this initial point to the lowest point is simply:

As the pendulum travel (vertically) from the initial point to the bottom point, its potential energy is converted to kinetic energy:


where m is the mass of the pendulum, g = 10 m/s2 is the constant gravitational acceleration, h = 0.05 is the vertical it travels, v is the pendulum velocity at the bottom, which we are trying to solve for.
The m on both sides of the equation cancel out


so D is the correct answer
Balanced forces<span> act on the same object and </span>Action-Reaction forces<span> act on different objects.</span>
Refer to the diagram shown below.
Assume that
(a) The piano rolls down on frictionless wheels,
(b) Wind resistance is negligible.
The distance along the ramp is
d = (1.3 m)/sin(22°) = 3.4703 m
The component of the piano's weight along the ramp is
mg sin(22°)
If the acceleration down the ramp is a, then
ma = mg sin(22°)
a = g sin(22°) = (9.8 m/s²) sin(22°) = 3.671 m/s²
The time, t, to travel down the ramp from rest is given by
(3.4703 m) = 0.5*(3.671 m/s²)*(t s)²
t² = 3.4703/1.8355 = 1.8907
t = 1.375 s
Answer: 1.375 s
Answer:
C
Explanation:
A Tsunami is usually the result of an earthquake under the sea
Vector quantities have both magnitude and direction. Distance is a scalar quantity. It refers only to how far an object has traveled. For example, 4 feet is a distance; it gives no information about direction.