<span>When the question says the ball lands a distance of 235 meters from the release point, we can assume this means the horizontal distance is 235 meters.
Let's calculate the time for the ball to fall 235 meters to the ground.
y = (1/2)gt^2
t^2 = 2y / g
t = sqrt{ 2y / g }
t = sqrt{ (2) (235 m) / (9.81 m/s^2) }
t = 6.9217 s
We can use the time t to find the horizontal speed.
v = d / t
v = 235 m / 6.9217 s
v = 33.95 m/s
Since the horizontal speed is the speed of the plane, the speed of the plane is 33.95 m/s</span>
Answer:
B
Explanation:
Water is essential to most bodily functions.
Answer:
Distance covered by the sound in air is 800 meter and the time taken by the sound in water for the same distance is 0.5 seconds.
Explanation:
Given:
Speed of sound in air = 320 m/s
Speed of sound in water = 1600 m/s
Time taken to reach certain distance in air = 2.5 sec
a.
We have to find the distance traveled by sound in air.
Distance = Product of speed and time.
⇒ 
⇒ 
⇒
meters.
b.
Now we have to find how much time the sound will take to travel in water.
⇒ Time = Ratio of distance and speed
⇒ 
⇒
<em> ...distance = 800 m and speed = 1600 m/s</em>
⇒ 
⇒
seconds.
Distance covered by the sound in air is 800 meter and the time taken by the sound in water for the same distance is 0.5 seconds.
Answer:
yes
Explanation:
because it is independent of eachother