Answer:
v = 7.18_m/s
Explanation:
Velocity of the earth towards the ball is = velocity of the ball moving towards earth
For object in free fall, we have
Where
v = final velocity
u = initial velocity
g = acceleration due to gravity
t = time
S = height of ball above ground
v^2 = u^2 - 2×g×(-S)
= 0 + 2×9.8×2.63 = 51.55_m^2/s^2
Velocity of the ball just before it hits the ground is
v = 7.18_m/s
Common health issues that can be positively affected, prevented or controlled by exercise.
The formula is F = ( q1 * q2 ) / r ^ 2
<span>where: q is the individual charges of each ion </span>
<span>r is the distance between the nuclei </span>
<span>The formula is not important but to explain the relationship between the atoms in the compounds and their lattice energy. </span>
<span>From the formula we can first conclude that compounds of ions with greater charges will have a greater lattice energy. This is a direct relationship. </span>
<span>For example, the compounds BaO and SrO, whose ions' charges are ( + 2 ) and ( - 2 ) respectively for each, will have greater lattice energies that the compounds NaF and KCl, whose ions' charges are ( + 1 ) and ( - 1 ) respectively for each. </span>
<span>So Far: ( BaO and SrO ) > ( NaF and KCl ) </span>
<span>The second part required you find the relative distance between the atoms of the compounds. Really, the lattice energy is stronger with smaller atoms, an indirect relationship. </span>
<span>For example, in NaF the ions are smaller than the ions in KCl so it has a greater lattice energy. Because Sr is smaller than Ba, SrO has a greater lattice energy than BaO. </span>
<span>Therefore: </span>
<span>Answer: SrO > BaO > NaF > KCl </span>