55.9 kPa; Variables given = volume (V), moles (n), temperature (T)
We must calculate <em>p</em> from <em>V, n</em>, and <em>T</em>, so we use <em>the Ideal Gas Law</em>:
<em>pV = nRT</em>
Solve for <em>p</em>: <em>p = nRT/V</em>
R = 8.314 kPa.L.K^(-1).mol^(-1)
<em>T</em> = (265 + 273.15) K = 538.15 K
<em>V</em> = 500.0 mL = 0.5000 L
∴ <em>p</em> = [6.25 x 10^(-3) mol x 8.314 kPa·L·K^(-1)·mol^(-1) x 538.15 K]/(0.5000 L) = 55.9 kPa
Answer:
god says dont use any assault language okay?
Explanation:
Answer:
Single-gene disorders, where a mutation affects one gene. Sickle cell anemia is an example.
Chromosomal disorders, where chromosomes (or parts of chromosomes) are missing or changed.
Complex disorders, where there are mutations in two or more genius.
Hope it help^^
Brainliest me pls
The first ionisation energy of silicon is greater than that of phosphorus.
<span>H2O2
First, let's determine how many moles of hydrogen and oxygen atoms we have. Start by looking up the atomic weights of those elements:
Atomic weight hydrogen = 1.00794
Atomic weight oxygen = 15.999
Moles hydrogen = 1.33 g / 1.00794 g/mol = 1.319522987 mol
Moles oxygen = 21.3 g / 15.999 g/mol = 1.331333208 mol
We now have a ratio of 1.319522987 : 1.331333208 and we want a ratio of small integers that is close. Start by dividing all the numbers in the ratio by the smallest value, giving:
1 : 1.008950371
This ratio is acceptably close to 1:1 so I assume the formula is of the form HnOn where n is a small integer. Let's initially assume that n is 1, so the mass would be
1.00794 + 15.999 = 17.00694
Obviously 17 is far smaller than 34.1. So let's divide 34.1 by 17.00694 and see what n should be:
34.1 / 17.00694 = 2.005063815
So the formula we want is H2O2, which is hydrogen peroxide.</span>