Answer:
Shear stress, force tending to cause deformation of a material by slippage along a plane or planes parallel to the imposed stress. The resultant shear is of great importance in nature, being intimately related to the downslope movement of earth materials and to earthquakes.
Answer:
59.4 meters
Explanation:
The correct question statement is :
A floor polisher has a rotating disk that has a 15-cm radius. The disk rotates at a constant angular velocity of 1.4 rev/s and is covered with a soft material that does the polishing. An operator holds the polisher in one place for 4.5 s, in order to buff an especially scuff ed area of the floor. How far (in meters) does a spot on the outer edge of the disk move during this time?
Solution:
We know for a circle of radius r and θ angle by an arc of length S at the center,
S=rθ
This gives
θ=S/r
also we know angular velocity
ω=θ/t where t is time
or
θ=ωt
and we know
1 revolution =2π radians
From this we have
angular velocity ω = 1.4 revolutions per sec = 1.4×2π radians /sec = 1.4×3.14×2×= 8.8 radians / sec
Putting values of ω and time t in
θ=ωt
we have
θ= 8.8 rad / sec × 4.5 sec
θ= 396 radians
We are given radius r = 15 cm = 15 ×0.01 m=0.15 m (because 1 m= 100 cm and hence, 1 cm = 0.01 m)
put this value of θ and r in
S=rθ
we have
S= 396 radians ×0.15 m=59.4 m
Answer:
Explanation: y’all taking the same test as me hahahahah I got the answers but I can’t attach the picture here so hit me up on snap daniela_0789
GPE= weight•height= 15 N• 0.22meter= 3.3 Joules
I hope this helps ~~Charlotte~~
Answer:

Explanation:
mass of the bicycle + cyclist = 50 kg
constant speed = 6 km/h
a cyclist coasting down a 5.0° incline
the downward velocity is constant, so net acceleration must be zero
the air drag must be equal to gravitational force downward along the ramp
now for upward motion




