Answer:
a machine capable of carrying out a complex series of actions automatically, especially one programmable by a computer.
Answer:
Same reading.
Explanation:
Assume that after the string breaks the ball falls through the liquid with constant speed. If the mass of the bucket and the liquid is 1.20 kg, and the mass of the ball is 0.150 kg,
A.) Before the string break, the total weight = weight of the can + weight of the water.
According to Archimedes' Principle which state that: “A body immersed in a liquid loses weight by an amount equal to the weight of the liquid displaced.” Archimedes principle also states that: “When a body is immersed in a liquid, an upward thrust, equal to the weight of the liquid displaced, acts on it
B.) After the string break.
The scale will have the same reading as before the string break.
Answer:
It attracts ferrous materials
Explanation:
A magnet attracts ferrous materials A ferrous materials are metallic substances or conductors that can conduct heat and electricity. Example of this ferrous materials includes iron, metal etc. Since magnets only can attracts metallic substance to itself, then we can also conclude that they attract ferrous materials since ferrous materials. possesses properties of a metal.
Magnets possesses both north and south poles.
The same of the bar magnets are known to repel each other while unlike poles attract each other.
First question (upper left):
1/Req = 1/12 + 1/24 = 1/8
Req = 8 ohms
Voltage is equal through different resistors, and V1 = V2 = 24 V.
Current varies through parallel resistors: I1 = V1/R1 = 24/12 = 2 A. I2 = 24/24 = 1 A.
Second question (middle left):
V1 = V2 = 6 V (parallel circuits)
I1 = 2 A, I2 = 1 A, IT = 2+1 = 3 A.
R1 = V1/I1 = 6/2 = 3 ohms, R2 = 6/1 = 6 ohms, 1/Req = 1/2 + 1/1, Req = 2/3 ohms
Third question (bottom left):
V1 = V2 = 12 V
IT = 3 A, meaning Req = V/It = 12 V/3 A = 4 ohms
1/Req = 1/R1 + 1/R2, 1/4 = 1/12 + 1/R2, R2 = 6 ohms
I1 = V/R1 = 1 A, I2 = V/R2 = 2 A
Fourth question (top right):
1/Req = 1/20 + 1/20, Req = 10 ohms
IT = 4 A, so VT = IT(Req) = 4*10 = 40 V
Parallel circuits, so V1 = V2 = VT = 40 V
Since the resistors are identical, the current is split evenly between both: I1 = I2 = IT/2 = 2 A.
Fifth question (middle right):
1/Req = 1/5 + 1/20 + 1/4, Req = 2 ohms
IT = VT/Req = 40 V/2 ohms = 20 A
V1 = V2 = V3 = 40 V
The current of 20 A will be divided proportionally according to the resistances of 5, 20, and 4, the factors will be 5/(5+20+4), 20/(5+20+4), and 4/(5+20+4), which are 5/29, 20/29, and 4/29.
I1 = 20(5/29) = 100/29 A
I2 = 20(20/29) = 400/29 A
I3 = 20(4/29) = 80/29 A
Sixth question (bottom right):
V2 = 30V is given, but since these are parallel circuits, V1 = VT = 30 V.
Then I1 = V1/R1 = 30 V/10 ohms = 3 A.
I2 = 30 V/15 ohms = 2 A.
IT = 3 + 2 = 5 A
1/Req = 1/10 + 1/15, Req = 6 ohms