The mass of the ion is 5.96 X 10⁻²⁵ kg
<u>Explanation:</u>
The electrical energy given to the ion Vq will be changed into kinetic energy 
As the ion moves with velocity v in a magnetic field B then the magnetic Lorentz force Bqv will be balanced by centrifugal force
.
So,

and

Right from these eliminating v, we can derive

On substituting the value, we get:

m = 5.96 X 10⁻²⁵ kg.
Answer:
hope it helps
Explanation:
Newtons third law is that objects exert equal and opposite forces on each other.
'every action has an equal and opposite reaction'.
Given Information:
Initial speed = u = 3.21 yards/s
Acceleration = α = 1.71 yards/s²
Final speed = v = 7.54 yards/s
Required Information:
Distance = s = ?
Answer:
Distance = s = 13.61
Explanation:
We are given the speeds and acceleration of the runner and we want to find out how much distance he covered before being tackled.
We know from the equations of motion,
v² = u² + 2αs
Where u is the initial speed of the runner, v is the final speed of the runner, α is the acceleration of the runner and s is the distance traveled by the runner.
Re-arranging the above equation for distance yields,
2αs = v² - u²
s = (v² - u²)/2α
s = (7.54² - 3.21²)/2×1.71
s = 46.55/3.42
s = 13.61 yards
Therefore, the runner traveled a distance of 13.61 yards before being tackled.
Answer:
The magnetic field is
Explanation:
From the question we are told that
The mass of the metal rod is 
The current on the rod is 
The distance of separation(equivalent to length of the rod ) is 
The coefficient of kinetic friction is 
The kinetic frictional force is 
The constant speed is 
Generally the magnetic force on the rod is mathematically represented as

For the rod to move with a constant velocity the magnetic force must be equal to the kinetic frictional force so

=> 
=> 
=> 
Complete Question
At what angle should the axes of two Polaroids be placed so as to reduce the intensity of the incident unpolarized light to 1/5.
Answer:
The angle is
Explanation:
From the question we are told that
The light emerging from second Polaroid is 1/5 the unpolarized
Generally the intensity of light emerging from the first Polaroid is mathematically represented as

Generally from the Malus law the intensity of light emerging from the second Polaroid is mathematically represented

=> 
=> 
From the question


=> ![\theta = cos ^{-1} [\sqrt{\frac{2}{5}} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%20%20cos%20%5E%7B-1%7D%20%5B%5Csqrt%7B%5Cfrac%7B2%7D%7B5%7D%7D%20%20%5D)
=> 