On the periodic table, the elements colored yellow, which generally border the stair -step line , are considered to be metalloids
Answer: The volume of
required is 25.0 ml
Explanation:
According to the neutralization law,
where,
= basicity
= 1
= molarity of
solution = 2.00 M
= volume of
solution = 50.0 ml
= acidity of
= 1
= molarity of
solution = 4.00 M
= volume of
solution = ?
Putting in the values we get:
Therefore, volume of
required is 25.0 ml
We can use two equations for this problem.<span>
t1/2 = ln
2 / λ = 0.693 / λ
Where t1/2 is the half-life of the element and λ is
decay constant.
20 days = 0.693 / λ
λ = 0.693 / 20 days
(1)
Nt = Nο eΛ(-λt) (2)
Where Nt is atoms at t time, No is the initial amount of substance, λ is decay constant and t is the time
taken.
t = 40 days</span>
<span>No = 200 g
From (1) and (2),
Nt = 200 g eΛ(-(0.693 / 20 days) 40 days)
<span>Nt = 50.01 g</span></span><span>
</span>Hence, 50.01 grams of isotope will remain after 40 days.
<span>
</span>
Stardust atoms are heavier elements, the percentage of star mass in our body is much more impressive. Most hydrogen in our body floats around in the form of water .
Answer:
7,94 minutes
Explanation:
If the descomposition of HBr(gr) into elemental species have a rate constant, then this reaction belongs to a zero-order reaction kinetics, where the r<em>eaction rate does not depend on the concentration of the reactants. </em>
For the zero-order reactions, concentration-time equation can be written as follows:
[A] = - Kt + [Ao]
where:
- [A]: concentration of the reactant A at the <em>t </em>time,
- [A]o: initial concentration of the reactant A,
- K: rate constant,
- t: elapsed time of the reaction
<u>To solve the problem, we just replace our data in the concentration-time equation, and we clear the value of t.</u>
Data:
K = 4.2 ×10−3atm/s,
[A]o=[HBr]o= 2 atm,
[A]=[HBr]=0 atm (all HBr(g) is gone)
<em>We clear the incognita :</em>
[A] = - Kt + [Ao]............. Kt = [Ao] - [A]
t = ([Ao] - [A])/K
<em>We replace the numerical values:</em>
t = (2 atm - 0 atm)/4.2 ×10−3atm/s = 476,19 s = 7,94 minutes
So, we need 7,94 minutes to achieve complete conversion into elements ([HBr]=0).