Answer: the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m
Explanation:
Given that;
mass of vehicle m = 1000 kg
for a low speed test; V = 2.5 m/s
bumper maximum deflection = 4 cm = 0.04 m
First we determine the energy of the vehicle just prior to impact;
W_v = 1/2mv²
we substitute
W_v = 1/2 × 1000 × (2.5)²
W_v = 3125 J
now, the the effective design stiffness k will be:
at the impact point, energy of the vehicle converts to elastic potential energy of the bumper;
hence;
W_v = 1/2kx²
we substitute
3125 = 1/2 × k (0.04)²
3125 = 0.0008k
k = 3125 / 0.0008
k = 3906250 N/m
Therefore, the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m
Answer:
y(i) = h
v(y.i) = 0
Explanation:
See attachment for elaboration
This may helpv^2=u^2+2as. v=0 at top of flight. a=acceleration of gravity(vo^2)/2a=s.
Answer:
I = M R^2 is the moment of inertia about a point that is a distance R from the center of mass (uniform distributed mass).
The moment of inertia about the center of a sphere is 2 / 5 M R^2.
By the parallel axis theorem the moment of inertia about a point on the rim of the sphere is I = 2/5 M R^2 + M R^2 = 7/5 M R^2
I = 7/5 * 20 kg * .2^2 m = 1.12 kg m^2
Hey There,
Movement of earth around sun and tilt of earth on it's axis causes seasons on earth. So, the answer is B.
Hope this helps!