Answer:12.8 ft/s
Explanation:
Given
Speed of hoop 
height of top 
Initial energy at bottom is

Where m=mass of hoop
I=moment of inertia of hoop
=angular velocity
for pure rolling 



Energy required to reach at top


Thus 512.2 m is converted energy is spent to raise the potential energy of hoop and remaining is in the form of kinetic and rotational energy

Therefore



Answer:
(a) 161.57 N
(b) 0.958 m/s^2
Explanation:
Force applied, F = 220 N
mass of crate, m = 61 kg
μ = 0.27
(a) The magnitude of the frictional force,
f = μ N
where, N is the normal reaction
N = m x g = 61 x 9.81 = 598.41 N
So, the frictional force, f = 0.27 x 598.41
f = 161.57 N
(b) Let a be the acceleration of the crate.
Fnet = F - f = 220 - 161.57
Fnet = 58.43 N
According to newton's second law
Fnet = mass x acceleration
58.43 = 61 x a
a = 0.958 m/s^2
Thus, the acceleration of the crate is 0.958 m/s^2.
Answer:
Gamma rays occupy the short-wavelength end of the spectrum; they can have wavelengths smaller than the nucleus of an atom. Visible light wavesare one-thousandths the width of human hair--about a million times longer than gamma rays. Radio waves, at the long-wavelength end of the spectrum, can be many meters long.
Yes, think about the difference of swinging a bat and not hitting a ball. It's fairly easy right? Now, when you hit a ball with the bat, you will feel the bat sting your hands. That's the force the ball is exerting on the bat!
Latitude, elevation, ocean currents, topography, and prevailing winds. There's probably a few others but these are the most important.