1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ohaa [14]
3 years ago
5

¿Qué resistencia debe ser conectada en paralelo con una de 20 Ω para hacer una

Physics
1 answer:
Lisa [10]3 years ago
6 0

Answer:

La resistencia que debe ser conectada en paralelo con una de 20 Ω para hacer una  resistencia combinada de 15 Ω tiene un valor de 60 Ω

Explanation:

Las resistencias son aquellos dispositivos en los circuitos eléctricos que suelen emplearse para oponerse al paso de la corriente eléctrica.

Se denomina resistencia resultante o equivalente al valor de la resistencia que se obtiene al considerar un conjunto de ellas.

Cuando tenes resistencias en paralelo la corriente se divide y circula por varios caminos.

La resistencia equivalente de un circuito de resistencias en paralelo es igual al recíproco de la suma de los inversos de las resistencias individuales:

R=\frac{1}{\frac{1}{R_{1} } +\frac{1}{R_{2} } +...+\frac{1}{R_{N} }}

Esto también puede ser expresado como:

\frac{1}{R} =\frac{1}{R_{1} } +\frac{1}{R_{2} } +...+\frac{1}{R_{N} }

Entonces, en este caso sabes:

  • R= 15 Ω
  • R1= 20 Ω
  • R2=?

Reemplazando:

\frac{1}{15} =\frac{1}{20}+\frac{1}{R2}

y resolviendo:

\frac{1}{R2} =\frac{1}{15} -\frac{1}{20}

\frac{1}{R2} =\frac{1}{60}

se obtiene:

R2=60 Ω

<u><em>La resistencia que debe ser conectada en paralelo con una de 20 Ω para hacer una  resistencia combinada de 15 Ω tiene un valor de 60 Ω</em></u>

You might be interested in
You are making a round trip from City A to City B and back to City A again at constant speed. At what point in the trip is your
MA_775_DIABLO [31]

Answer:

Halfway between B and A on the return leg.

Explanation:

Your average SPEED for the entire trip will equal your constant speed as the time and distance increase at proportionate rates.

Your average VELOCITY will equal your constant speed while you travel from A to B because time and displacement are increasing at proportionate rates.

When you turn around at B to return, your Displacement is now decreasing while your travel time continues to increase, so your average velocity decreases.

Lets say the distance from A to B is 90 km and your constant speed is 30 km/hr.

your average speed is 30 km/hr because you took 6 hrs to travel 180 km

We want to find your position when your average velocity is 30/3 = 10 km/hr

it took 3 hrs to go 90 km from A to B. Let t be the time lapsed since turn around

your displacement is given by d = 90 - 30(t)

and your total time of travel is t + 3 hrs

 v = d/t

10 = (90 - 30t) / (t + 3)

10(t + 3) = (90 - 30t)

10t + 30 = 90 - 30t

40t = 60

t = 1.5 hrs

This will occur when you are halfway between B and A

3 0
2 years ago
A student throws a 130 g snowball at 6.5 m/s at the side of the schoolhouse, where it hits and sticks. What is the magnitude of
Alex73 [517]

Answer:

4.7 N

Explanation:

130 g = 0.13 kg

The momentum of the snowball when it's thrown at the wall is

p = mv = 0.13*6.5 = 0.845 kgm/s

Which is also the impulse. From here we can calculate the magnitude of the average force F knowing the duration of the collision is 0.18 s

p = F\Delta t

F*0.18 = 0.845

F = 0.845 / 0.18 = 4.7 N

8 0
3 years ago
Suppose you could fit 100 dimes, end to end, between your card with the pinhole and your dime-sized sunball. how many suns could
Naddika [18.5K]

Answer: 100 suns

Explanation:

We can solve this with the following relation:

\frac{d}{x_{sunball-pinhole}}=\frac{D}{x_{sun-pinhole}}

Where:

d=17.91 mm =17.91(10)^{-3}  m is the diameter of a dime

D is the diameter of the Sun

x_{sun-pinhole}=150,000,000 km=1.5(10)^{11}  m is the distance between the Sun and the pinhole

x_{sunball-pinhole}=100 d=1.791 m is the amount of dimes that fit in a distance between the sunball and the pinhole

Finding D:

D=\frac{d}{x_{sunball-pinhole}}x_{sun-pinhole}

D=\frac{17.91(10)^{-3}  m}{1.791 m} 1.5(10)^{11}  m

D=1.5(10)^{9}  m This is roughly the diameter of the Sun

Now, the distance between the Earth and the Sun is one astronomical unit (1 AU), which is equal to:

1 AU=149,597,870,700 m

So, we have to divide this distance between D in order to find how many suns could it fit in this distance:

\frac{149,597,870,700 m}{1.5(10)^{9}  m}=99.73 suns \approx 100 suns

8 0
3 years ago
An elevator motor provides 45.0 kW of power while lifting an elevator 35.0 m. If the elevator contains seven passengers each wit
mylen [45]

Find how much work ∆<em>W</em> is done by the motor in lifting the elevator:

<em>P</em> = ∆<em>W</em> / ∆<em>t</em>

where

• <em>P</em> = 45.0 kW = power provided by the motor

• ∆<em>W</em> = work done

• ∆<em>t</em> = 20.0 s = duration of time

Solve for ∆<em>W</em> :

∆<em>W</em> = <em>P</em> ∆<em>t</em> = (45.0 kW) (20.0 s) = 900 kJ

In other words, it requires 900 kJ of energy to lift the elevator and its passengers. The combined mass of the system is <em>M</em> = (<em>m</em> + 490.0) kg, where <em>m</em> is the mass of the elevator alone. Then

∆<em>W</em> = <em>M</em> <em>g h</em>

where

• <em>g</em> = 9.80 m/s² = acceleration due to gravity

• <em>h</em> = 35.0 m = distance covered by the elevator

Solve for <em>M</em>, then for <em>m</em> :

<em>M</em> = ∆<em>W</em> / (<em>g h</em>) = (900 kJ) / ((9.80 m/s²) (35.0 m)) ≈ 2623.91 kg

<em>m</em> = <em>M</em> - 490.0 kg ≈ 2133.91 kg ≈ 2130 kg

4 0
3 years ago
Another name for the skin as a whole.
sergejj [24]
Organ, integument, dermis
5 0
3 years ago
Other questions:
  • During a demonstration of the gravitational force on falling objects to her class, Sarah drops an 11 lb. bowling ball from the t
    11·1 answer
  • The driver of a car travels at 90 km / h, observes some children playing on the road 50 m away, and applies the brakes, managing
    8·1 answer
  • A man pulls on his dog's leash to keep him from running after a bicycle. Which term best describes this example?
    9·2 answers
  • When you mve into new jeey from another state you must have your vehicle inspected within ___.
    9·1 answer
  • identical springs are placed side-by-side (in parallel), and connected to a large massive block. The stiffness of the 43-spring
    7·1 answer
  • Descibe the real-world examples of Newton's third lawthat were idenified in "Applications of Newton's Laws."
    15·2 answers
  • Moon A has a mass of 3M and a radius of 2R. Moon B has a mass of 4M and a radius of R. What is the ratio of the force of gravita
    6·1 answer
  • A ball is throw at an angle of 30 degrees off the horizontal, with an initial velocity of 28 m/s. what is the maximum height the
    5·1 answer
  • A__ is an area where two bones meet and where one bone moves on another
    5·1 answer
  • Complete the following sentence. Pressure in a liquid depends on the __________ of the liquid.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!