1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ohaa [14]
3 years ago
5

¿Qué resistencia debe ser conectada en paralelo con una de 20 Ω para hacer una

Physics
1 answer:
Lisa [10]3 years ago
6 0

Answer:

La resistencia que debe ser conectada en paralelo con una de 20 Ω para hacer una  resistencia combinada de 15 Ω tiene un valor de 60 Ω

Explanation:

Las resistencias son aquellos dispositivos en los circuitos eléctricos que suelen emplearse para oponerse al paso de la corriente eléctrica.

Se denomina resistencia resultante o equivalente al valor de la resistencia que se obtiene al considerar un conjunto de ellas.

Cuando tenes resistencias en paralelo la corriente se divide y circula por varios caminos.

La resistencia equivalente de un circuito de resistencias en paralelo es igual al recíproco de la suma de los inversos de las resistencias individuales:

R=\frac{1}{\frac{1}{R_{1} } +\frac{1}{R_{2} } +...+\frac{1}{R_{N} }}

Esto también puede ser expresado como:

\frac{1}{R} =\frac{1}{R_{1} } +\frac{1}{R_{2} } +...+\frac{1}{R_{N} }

Entonces, en este caso sabes:

  • R= 15 Ω
  • R1= 20 Ω
  • R2=?

Reemplazando:

\frac{1}{15} =\frac{1}{20}+\frac{1}{R2}

y resolviendo:

\frac{1}{R2} =\frac{1}{15} -\frac{1}{20}

\frac{1}{R2} =\frac{1}{60}

se obtiene:

R2=60 Ω

<u><em>La resistencia que debe ser conectada en paralelo con una de 20 Ω para hacer una  resistencia combinada de 15 Ω tiene un valor de 60 Ω</em></u>

You might be interested in
an ice cube placed in microwave melts in five minutes and it takes 3.50 kj of energy to melt it. what is the power of the microw
Artist 52 [7]

If the ice absorbed 350,000 joules in 5 minutes, then it absorbed energy
at the rate of

   (350,000 joules) / (5 x 60 seconds)  =<em>  1,166-2/3 watts</em> .

Surely the ice cube didn't absorb every joule delivered to the cooking chamber,
so the microwave oven's cooking power had to be significantly more than that.

6 0
4 years ago
How can wasted energy be made useful?
murzikaleks [220]

Answer:

by using it in a such place or thing which needs it or which can work with it

7 0
2 years ago
Without effective assessment methods, teachers have no documented proof of childrens specific ____ and _____.
schepotkina [342]

Answer:

D strengths and weakneses

Explanation:

8 0
3 years ago
What is the restoring force of a spring with a spring constant of 4a and a stretched displacement of 3b? A. –7 ab B. `-7 a/b ` C
algol13

Answer:

C. -12 ab

Explanation:

The restoring force on a spring is given by Hooke's law:

F=-kx

where

k is the spring constant

x is the stretched (or compressed) displacement of the spring

In this problem we have:

k = 4a

x = 3b

Substituting into the equation, we find:

F=-(4a)(3b) = -12 ab

And the negative sign means that the direction of the force (negative) is opposite to the direction of the displacement (positive).

3 0
3 years ago
Let surface S be the boundary of the solid object enclosed by x^2+z^2=4, x+y=6, x=0, y=0, and z=0. and, let f(x,y,z)=(3x)i+(x+y+
babunello [35]

a. I've attached a plot of the surface. Each face is parameterized by

• \mathbf s_1(x,y)=x\,\mathbf i+y\,\mathbf j with 0\le x\le2 and 0\le y\le6-x;

• \mathbf s_2(u,v)=u\cos v\,\mathbf i+u\sin v\,\mathbf k with 0\le u\le2 and 0\le v\le\frac\pi2;

• \mathbf s_3(y,z)=y\,\mathbf j+z\,\mathbf k with 0\le y\le 6 and 0\le z\le2;

• \mathbf s_4(u,v)=u\cos v\,\mathbf i+(6-u\cos v)\,\mathbf j+u\sin v\,\mathbf k with 0\le u\le2 and 0\le v\le\frac\pi2; and

• \mathbf s_5(u,y)=2\cos u\,\mathbf i+y\,\mathbf j+2\sin u\,\mathbf k with 0\le u\le\frac\pi2 and 0\le y\le6-2\cos u.

b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.

\mathbf n_1=\dfrac{\partial\mathbf s_1}{\partial y}\times\dfrac{\partial\mathbf s_1}{\partial x}=-\mathbf k

\mathbf n_2=\dfrac{\partial\mathbf s_2}{\partial u}\times\dfrac{\partial\mathbf s_2}{\partial v}=-u\,\mathbf j

\mathbf n_3=\dfrac{\partial\mathbf s_3}{\partial z}\times\dfrac{\partial\mathbf s_3}{\partial y}=-\mathbf i

\mathbf n_4=\dfrac{\partial\mathbf s_4}{\partial v}\times\dfrac{\partial\mathbf s_4}{\partial u}=u\,\mathbf i+u\,\mathbf j

\mathbf n_5=\dfrac{\partial\mathbf s_5}{\partial y}\times\dfrac{\partial\mathbf s_5}{\partial u}=2\cos u\,\mathbf i+2\sin u\,\mathbf k

Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.

\displaystyle\iint_{S_1}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{6-x}f(x,y,0)\cdot\mathbf n_1\,\mathrm dy\,\mathrm dx

=\displaystyle\int_0^2\int_0^{6-x}0\,\mathrm dy\,\mathrm dx=0

\displaystyle\iint_{S_2}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,0,u\sin v)\cdot\mathbf n_2\,\mathrm dv\,\mathrm du

\displaystyle=\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=-8

\displaystyle\iint_{S_3}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^6\mathbf f(0,y,z)\cdot\mathbf n_3\,\mathrm dy\,\mathrm dz

=\displaystyle\int_0^2\int_0^60\,\mathrm dy\,\mathrm dz=0

\displaystyle\iint_{S_4}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,6-u\cos v,u\sin v)\cdot\mathbf n_4\,\mathrm dv\,\mathrm du

=\displaystyle\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=\frac{40}3+6\pi

\displaystyle\iint_{S_5}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^{\frac\pi2}\int_0^{6-2\cos u}\mathbf f(2\cos u,y,2\sin u)\cdot\mathbf n_5\,\mathrm dy\,\mathrm du

=\displaystyle\int_0^{\frac\pi2}\int_0^{6-2\cos u}12\,\mathrm dy\,\mathrm du=36\pi-24

c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.

Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.

\displaystyle\iint_S\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\iiint_R\mathrm{div}\mathbf f(x,y,z)\,\mathrm dV

where <em>R</em> is the interior of <em>S</em>. We have

\mathrm{div}\mathbf f(x,y,z)=\dfrac{\partial(3x)}{\partial x}+\dfrac{\partial(x+y+2z)}{\partial y}+\dfrac{\partial(3z)}{\partial z}=7

The integral is easily computed in cylindrical coordinates:

\begin{cases}x(r,t)=r\cos t\\y(r,t)=6-r\cos t\\z(r,t)=r\sin t\end{cases},0\le r\le 2,0\le t\le\dfrac\pi2

\displaystyle\int_0^2\int_0^{\frac\pi2}\int_0^{6-r\cos t}7r\,\mathrm dy\,\mathrm dt\,\mathrm dr=42\pi-\frac{56}3

as expected.

4 0
3 years ago
Other questions:
  • This is may mastering physics homework and I just need help solving the question.
    8·1 answer
  • Which statement is true?
    12·1 answer
  • A cat has a mass of 3 kg and runs at a speed of 6 m/s. how much kinetic energy does the cat have?
    12·1 answer
  • 1. List one way mitosis and meiosis are the same and one way they are different.
    10·1 answer
  • Maggie is a member of her school’s environmental club and is interested in recycling. She asks the question, “How does exposure
    13·1 answer
  • A spacecraft has a momentum of 20,000 kg-m/s, and a mass of 250 kg. What is the magnitude of its velocity?
    14·1 answer
  • Consider a stone and a football both at rest and having the same mass. why is it painful to kick the stone than to kick the foot
    8·1 answer
  • What is accerlation due to gravity?? ​
    8·1 answer
  • HELP ME PLEASE!!!!
    14·1 answer
  • A motorcycle moving at 18 m/s decelerates at a rate of 3.6 m/s². What is the car's
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!