1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xenn [34]
3 years ago
7

What is the proper way to start a fire?

Physics
1 answer:
Katyanochek1 [597]3 years ago
6 0

Answer:

Explanation:

STEP 1: Gather Your Tools. There's a bit more to building a great campfire than simply placing a few logs in a heap ... If your site has a fire ring, you'll probably have to push the ash and charcoal from ... (Remember, tinder is the really light, quick burning material.) 1. ... Then build a larger teepee of firewood over the kindling.

You might be interested in
A 0.150 kg stone rests on a frictionless, horizontal surface. A bullet of mass 9.50 g, traveling horizontally at 380 m/s, strike
Anvisha [2.4K]

Answer:

(a)Magnitude=28.81 m/s

Direction=33.3 degree below the horizontal

(b) No, it is not perfectly elastic collision

Explanation:

We are given that

Mass of stone, M=0.150 kg

Mass of bullet, m=9.50 g=9.50\times 10^{3} kg

Initial speed of bullet, u=380 m/s

Initial speed of stone, U=0

Final speed of bullet, v=250m/s

a. We have to find the magnitude and direction of the velocity of the stone after it is struck.

Using conservation of momentum

mu+ MU=mv+ MV

Substitute the values

9.5\times 10^{-3}\times 380 i+0.150(0)=9.5\times 10^{-3} (250)j+0.150V

3.61i=2.375j+0.150V

3.61 i-2.375j=0.150V

V=\frac{1}{0.150}(3.61 i-2.375j)

V=24.07i-15.83j

Magnitude of velocity of stone

=\sqrt{(24.07)^2+(-15.83)^2}

|V|=28.81 m/s

Hence, the magnitude and direction of the velocity of the stone after it is struck, |V|=28.81 m/s

Direction

\theta=tan^{-1}(\frac{y}{x})

=tan^{-1}(\frac{-15.83}{24.07})

\theta=tan^{-1}(-0.657)

=33.3 degree below the horizontal

(b)

Initial kinetic energy

K_i=\frac{1}{2}mu^2+0=\frac{1}{2}(9.5\times 10^{-3})(380)^2

K_i=685.9 J

Final kinetic energy

K_f=\frac{1}{2}mv^2+\frac{1}{2}MV^2

=\frac{1}{2}(9.5\times 10^{-3})(250)^2+\frac{1}{2}(0.150)(28.81)^2

K_f=359.12 J

Initial kinetic energy is not equal to final kinetic energy. Hence, the collision is not perfectly elastic collision.

5 0
3 years ago
A spinning disc rotating at 130 rev/min slows and stops 31 s later. how many revolutions did the disc make during this time?
gayaneshka [121]
F = 130 revs/min = 130/60 revs/s = 13/6 revs/s
t = 31s
wi = 2πf = 2π × 13/6 = 13π/3 rads/s
wf = 0 rads/s = wi + at
a = -wi/t = -13π/3 × 1/31 = -13π/93 rads/s²
wf² - wi² = 2a∅
-169π²/9 rads²/s² = 2 × -13π/93 rads/s² × ∅
∅ = 1209π/18 rads
n = ∅/2π = (1209π/18)/(2π) = 1209/36 ≈ 33.5833 revolutions.
3 0
3 years ago
Match the situation with the energy transformation ITEMBANK: Move to Top A boy shooting a rubber band across the classroom A chi
Sonbull [250]
A boy shooting a rubber band across the classroom --> 
Elastic potential energy transformed into kinetic energy 
<span>The initial energy is the energy stored in the muscles of the boy's arm, which is elastic potential energy. This is converted into motion of the rubber, therefore kinetic energy

A child going down a slide on a playground --> </span>Gravitational potential energy transformed into kinetic energy 
On top of the slide, all the energy of the child is gravitational potential energy due to its height with respect to the ground (E=mgh). when it moves down the slide, this is converted into kinetic energy, because the child acquires a speed v (E=1/2 mv^2)
<span>
Rubbing your hands together to warm them on a cold day --> </span>Kinetic energy being transformed into thermal energy <span>
When rubbing hands, we are moving them (kinetic energy), and this energy raises the temperature of the hand's surface (thermal energy)

Turning on a battery operated light --> </span>
Chemical potential energy transformed into radiant energy <span>
A battery works by mean of chemical reactions (chemical potential energy), producing light (so, emitting energy by radiation, i.e. radiant energy)

Using a dc electric motor --> </span> Electrical energy transformed into kinetic energy<span>
A dc electric motor works using  currents (so, electrical energy), and the energy produced can be used for example to accelerate a car (kinetic energy)

Using a gas power heater to warm a room --> </span>Chemical potential energy transformed into thermal energy 
<span>A gas power heater burns gases (so, chemical reaction, i.e. chemical potential energy) to raise the temperature of the room (thermal energy)

Using a hand crank generator to produce electric current --> Kinetic energy transformed into electrical energy
In a hand-crank generator, the handle is being rotated (kinetic energy) in order to produce an electric current (electrical energy)

Using the light in your room that is plugged into the wall --> </span>Electrical energy transformed into radiant energy  
<span>The lamp works by using electrical current flowing into a resistor (electrical energy) and it produces light, so it emits energy by electromagnetic radiation (radiant energy)




</span> <span>

</span>
3 0
3 years ago
What is the resistance of : A) A 1.70 m long copper wire that is 0.700 mm in diameter? B) A 20.0 cm long piece of carbon with a
astra-53 [7]

Answer:

(I). The resistance of the copper wire is 0.0742 Ω.

(II). The resistance of the carbon piece is 1.75 Ω.

Explanation:

Given that,

Length of copper wire = 1.70 m

Diameter = 0.700 mm

Length of carbon piece = 20.0 cm

Cross section areaA = (2.00\times10^{-3})^2\ m

(I). We need to calculate the area of copper wire

Using formula of area

A=\pi r^2

A=3.14\times(\dfrac{0.700\times10^{-3}}{2})^2

We need to calculate the resistance

Using formula of resistance

R=\dfrac{\rho l}{A}

Put the value into the formula

R=\dfrac{1.68\times10^{-8}\times1.70}{3.14\times(\dfrac{0.700\times10^{-3}}{2})^2}

R=0.0742\ \Omega

(II). We need to calculate the resistance

Using formula of resistance

R=\dfrac{\rho l}{A}

Put the value into the formula

R=\dfrac{3.5\times10^{-5}\times20\times10^{-2}}{(2.00\times10^{-3})^2}

R=1.75\ \Omega

Hence, (I). The resistance of the copper wire is 0.0742 Ω.

(II). The resistance of the carbon piece is 1.75 Ω.

8 0
3 years ago
Please help me find the equations guys
Alexeev081 [22]

The line at the bottom of the picture ... probably the first line on a list of choices  .. is the correct equation.

4 0
3 years ago
Other questions:
  • The seatbelt across your chest should have about ______ fist width of slack
    13·1 answer
  • How many kilocalories are generated when the brakes are used to bring a 1200-kg car to rest from a speed of 95 km/h ? 1 kcal = 4
    6·1 answer
  • A rollerblader is blading along the sidewalk. Which forms of measurement would be the best to use to determine the rollerblader'
    5·1 answer
  • Water has a density that is 13.6 times less than that of mercury. If an undersea vessel descends to 1.6 km, how much pressure do
    6·1 answer
  • Carbon Dioxide is used in photosynthesis is an example of which spheres interacting?
    8·1 answer
  • A rod of length r and mass m is pivoted at its center, and given an angular velocity, ω1. What would be the angular velocity of
    8·1 answer
  • Constructive interference occurs when the crests of one wave overlap the crests of another wave. What is the result of construct
    5·2 answers
  • What is the energy put into a machine or device to make it work
    7·1 answer
  • Which of the following is a type of natural disaster that has impacted Florida?
    6·2 answers
  • a 4,000 kilogram rocket has accelerates at a rate of 35 m/s2. How much force is required to do this?​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!