1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NikAS [45]
3 years ago
13

Water is most dense at 4 degrees Celsius. Since at this temperature 1 ml of water has a mass of 1 g. What is its density?

Physics
2 answers:
sveticcg [70]3 years ago
7 0
The density is 1. 1/1=1
jolli1 [7]3 years ago
7 0

Answer: 1 g/cm³

Explanation:

The density of a substance is defined as the ratio of its mass to its volume.

At 4 °C, 1 mL water has 1 g mass.

1 mL = 1 cm³

Thus, ρ = m/V

m = 1 g

V = 1 cm³

⇒ ρ = m/V = 1 g/ 1 cm³

So, the density of water at 4° C is 1 g/cm³

You might be interested in
An insulated box has a barrier that confines a gas to only one side of the box. The barrier springs a leak, allowing the gas to
Vilka [71]

Answer:

B) The entropy is greater in the second state, with the gas on both sides of the box.

Explanation:

As we know that ,this is a irreversible process .The process leaves some effect on the surrounding or on the system itself ,is known as irreversible process.But on the other hand those process does not leave any effect on the system and surrounding is known as reversible process.

The entropy in the irreversible process always increases ,that is why the the entropy will be more when gas occupy the both boxes.

Therefore the answer is --B

3 0
3 years ago
The compound PCl5 decomposes into Cl2 and PCl3. The equilibrium of PCl5(g) Cl2(g) + PCl3(g) has a Keq of 2.24 x 10-2 at 327°C. W
nordsb [41]
Take note of the reaction formula which is PCl5=Cl2+PCl3.
The Keq = [Cl2] * [PCl3] / [PCl5]=2.24*10^-2.
For the reason that the volume is 1 liter, the concentration of Cl2 will be computed through: <span>(2.24 * 10^-2) * 0.235 / 0.174 </span> = 0.0303 mol/L is the answer.
7 0
3 years ago
Read 2 more answers
Carlos was camping and getting cold as the sun went down. He wanted to light a fire for warmth and light. However, he discovered
storchak [24]
1. The chemical reaction produced by Carlo's fire is exergonic because energy is "going out". As the reaction proceeds, entropy increases as the energy stored in the dry wood and leaves are used up as fuel to create the fire which produces low quality light and warmth.  

2. This reaction is a classic example of an exothermic reaction. Exothermic reactions are characterized with the presence of heat and light in the products. Combustion reactions are always exothermic in nature.

3. Catalyst are substances that are used to speed up reactions by lowering the activation requirement. Catalysts aren't consumed in the reaction and can still be chemically retrieved afterwards. In this situation, the leaves cannot be retrieved after the reaction ends. The leaves speed up the heating of the wood but it does not behave as a catalyst. 
6 0
3 years ago
A 44-cm-diameter water tank is filled with 35 cm of water. A 3.0-mm-diameter spigot at the very bottom of the tank is opened and
cricket20 [7]

Answer:

The frequency f = 521.59 Hz

The rate at which the frequency is changing = 186.9 Hz/s

Explanation:

Given that :

Diameter of the tank = 44 cm

Radius of the tank = \frac{d}{2} =\frac{44}{2} = 22 cm

Diameter of the spigot = 3.0 mm

Radius of the spigot = \frac{d}{2} =\frac{3.0}{2} = 1.5 mm

Diameter of the cylinder = 2.0 cm

Radius of the cylinder = \frac{d}{2} = \frac{2.0}{2} = 1.0 cm

Height of the cylinder = 40 cm = 0.40 m

The height of the water in the tank from the spigot = 35 cm = 0.35 m

Velocity at the top of the tank = 0 m/s

From the question given, we need to consider that  the question talks about movement of fluid through an open-closed pipe; as such it obeys Bernoulli's Equation and the constant discharge condition.

The expression for Bernoulli's Equation is as follows:

P_1+\frac{1}{2}pv_1^2+pgy_1=P_2+\frac{1}{2}pv^2_2+pgy_2

pgy_1=\frac{1}{2}pv^2_2 +pgy_2

v_2=\sqrt{2g(y_1-y_2)}

where;

P₁ and P₂ = initial and final pressure.

v₁ and v₂ = initial and final fluid velocity

y₁ and y₂ = initial and final height

p = density

g = acceleration due to gravity

So, from our given parameters; let's replace

v₁ = 0 m/s ; y₁ = 0.35 m ; y₂ = 0 m ; g = 9.8 m/s²

∴ we have:

v₂ = \sqrt{2*9.8*(0.35-0)}

v₂ = \sqrt {6.86}

v₂ = 2.61916

v₂ ≅ 2.62 m/s

Similarly, using the expression of the continuity for water flowing through the spigot into the cylinder; we have:

v₂A₂ = v₃A₃

v₂r₂² = v₃r₃²

where;

v₂r₂ = velocity of the fluid and radius at the spigot

v₃r₃ = velocity of the fluid and radius at the cylinder

v_3 = \frac{v_2r_2^2}{v_3^2}

where;

v₂ = 2.62 m/s

r₂ = 1.5 mm

r₃ = 1.0 cm

we have;

v₃ = (2.62  m/s)* (\frac{1.5mm^2}{1.0mm^2} )

v₃ = 0.0589 m/s

∴ velocity  of the fluid in the cylinder =  0.0589 m/s

So, in an open-closed system we are dealing with; the frequency can be calculated by using the expression;

f=\frac{v_s}{4(h-v_3t)}

where;

v_s = velocity of sound

h = height of the fluid

v₃ = velocity  of the fluid in the cylinder

f=\frac{343}{4(0.40-(0.0589)(0.4)}

f= \frac{343}{0.6576}

f = 521.59 Hz

∴ The frequency f = 521.59 Hz

b)

What are the rate at which the frequency is changing (Hz/s) when the cylinder has been filling for 4.0 s?

The rate at which the frequency is changing is related to the function of time (t) and as such:

\frac{df}{dt}= \frac{d}{dt}(\frac{v_s}{4}(h-v_3t)^{-1})

\frac{df}{dt}= -\frac{v_s}{4}(h-v_3t)^2(-v_3)

\frac{df}{dt}= \frac{v_sv_3}{4(h-v_3t)^2}

where;

v_s (velocity of sound) = 343 m/s

v₃ (velocity  of the fluid in the cylinder) = 0.0589 m/s

h (height of the cylinder) = 0.40 m

t (time) = 4.0 s

Substituting our values; we have ;

\frac{df}{dt}= \frac{343*0.0589}{4(0.4-(0.0589*4.0))^2}

= 186.873

≅ 186.9 Hz/s

∴ The rate at which the frequency is changing = 186.9 Hz/s  when the cylinder has been filling for 4.0 s.

8 0
3 years ago
regrine falcons frequently grab prey birds from the air. Sometimes they strike at high enough speeds that the force of the impac
solmaris [256]

Answers:

a) 30 m/s

b) 480 N

Explanation:

The rest of the question is written below:

a. What is the final speed of the falcon and pigeon?

b. What is the average force on the pigeon during the impact?

<h3>a) Final speed</h3>

This part can be solved by the Conservation of linear momentum principle, which establishes the initial momentum p_{i} before the collision must be equal to the final momentum p_{f} after the collision:

p_{i}=p_{f} (1)

Being:

p_{i}=MV_{i}+mU_{i}

p_{f}=(M+m) V

Where:

M=480 g \frac{1 kg}{1000 g}=0.48 kg the mas of the peregrine falcon

V_{i}=45 m/s the initial speed of the falcon

m=240 g \frac{1 kg}{1000 g}=0.24 kg is the mass of the pigeon

U_{i}=0 m/s the initial speed of the pigeon (at rest)

V the final speed of the system falcon-pigeon

Then:

MV_{i}+mU_{i}=(M+m) V (2)

Finding V:

V=\frac{MV_{i}}{M+m} (3)

V=\frac{(0.48 kg)(45 m/s)}{0.48 kg+0.24 kg} (4)

V=30 m/s (5) This is the final speed

<h3>b) Force on the pigeon</h3>

In this part we will use the following equation:

F=\frac{\Delta p}{\Delta t} (6)

Where:

F is the force exerted on the pigeon

\Delta t=0.015 s is the time

\Delta p is the pigeon's change in momentum

Then:

\Delta p=p_{f}-p_{i}=mV-mU_{i} (7)

\Delta p=mV (8) Since U_{i}=0

Substituting (8) in (6):

F=\frac{mV}{\Delta t} (9)

F=\frac{(0.24 kg)(30 m/s)}{0.015 s} (10)

Finally:

F=480 N

7 0
3 years ago
Other questions:
  • A piece of wood is floating in a bathtub. A second piece of wood sits on top of the first piece, and does not touch the water. I
    11·1 answer
  • Place the single weight with a known mass on the spring and release it. Eventually, the weight will come to rest at an equilibri
    5·1 answer
  • While sitting motionless in a 5 kg friction free wagon, an 80kg clown catches a 15 kg cannonball traveling horizontally at 20 m/
    11·1 answer
  • Aray diagram is shown.<br> What does the letter red line represent?
    13·1 answer
  • Assume an 8-kg bowling ball moving at 2m/s bounces off a spring at the same speed that it had before bouncing.What is the moment
    6·1 answer
  • At 20 degrees C, how much sodium chloride could be dissolved into 2 L of water?
    5·1 answer
  • Multiplying a vector with another vector results in what type of answer.
    11·1 answer
  • The pond is 13m deep calculate the pressure at the bottom of the pond due to water take density of water as 1000Kg/m3
    11·1 answer
  • If a ball has kinetic energy of 1000 joules and a speed of 5m/s, what is its mass?
    14·1 answer
  • How much does the angle of refraction change from 380nm to 700nm when the incident angle is 80?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!