Answer:
Según la actitud del hablante las oraciones se clasifican en enunciativas, interrogativas, etc. ... adverbios o expresiones que complementan a toda la oración (COr): ojalá, quizá.
Explanation:
Answer:
t = 0.1111 s
Explanation:
Let's reduce the magnitudes to the SI system
d = 120 mm (1m / 1000 mm)
d= 0.120 m
w = 540 rpm (2pi rad / 1 rev) (1 min / 60s)
w= 56.55 rad / s
When at maximum speed we can use angular kinematic relationships to find the time for a sperm revolution with zero angular acceleration
W = θ / t
t = θ / w
t = 2π / 56.55
t = 0.1111 s
Answer:
Explanation:
From the given information:
We know that the thin spherical shell is on a uniform surface which implies that both the inside and outside the charge of the sphere are equal, Then
The volume charge distribution relates to the radial direction at r = R
∴



To find the constant k, we examine the total charge Q which is:


∴



Thus;




Hence, from equation (1), if k = 


To verify the units:

↓ ↓ ↓
c/m³ c/m³ × 1/m
Thus, the units are verified.
The integrated charge Q



since 

Answer:
k1 + k2
Explanation:
Spring 1 has spring constant k1
Spring 2 has spring constant k2
After being applied by the same force, it is clearly mentioned that spring are extended by the same amount i.e. extension of spring 1 is equal to extension of spring 2.
x1 = x2
Since the force exerted to each spring might be different, let's assume F1 for spring 1 and F2 for spring 2. Hence the equations of spring constant for both springs are
k1 = F1/x -> F1 =k1*x
k2 = F2/x -> F2 =k2*x
While F = F1 + F2
Substitute equation of F1 and F2 into the equation of sum of forces
F = F1 + F2
F = k1*x + k2*x
= x(k1 + k2)
Note that this is applicable because both spring have the same extension of x (I repeat, EXTENTION, not length of the spring)
Considering the general equation of spring forces (Hooke's Law) F = kx,
The effective spring constant for the system is k1 + k2
<h2>Answer: The astronauts are falling at the same rate as the space shuttle as it orbits around earth</h2>
The astronauts seem to float because they are in free fall just like the spacecraft.
However, although they are constantly falling on the Earth, they do not fall because the ship orbits at a sufficient speed (in the same direction of rotation of the Earth) so that the centrifugal force is balanced with the Earth's gravitational pull.
In other words:
The spaccraft and the astronauts are in free fall but the Earth's surface will never be reached as long as they does not decrease the speed.
Then, as they accelerate toward Earth (regardless of their mass), it curves beneath them and never comes close.
That's why astronauts, having the same acceleration as the spacecraft, feel weightless and see themselves floating.