the higher concentration of molecules, the faster a reaction can occur
Answer:This could be in the form of using fewer energy services or using devices that require less energy.
Explanation:
The Action Force of this scenario is the pushing force of the Diver. The Reaction Force is the raft pushing back on the diver.
The Third Law of Motion states that "For every action, there is an equal and opposite reaction." Now when the diver dives off the raft, the raft is also pushing the same amount of force as the diver did as he dives off. The diver will then move forward and the raft on the other hand will move backwards.
The movement of the raft shows the opposite force. It will move backwards depending on how strong the diver will push off on the raft. And the amount of force he pushes on it, the raft will exert the same force so the stronger the force of the diver, the farther he will go because the raft will push him in that same direction as it goes backwards.
Gravitational to Kinetic to Chemical
Answer:
10.6 mA
Explanation:
t = time interval = 1.00 s
q = magnitude of charge on each ion = 1.6 x 10⁻¹⁹ C
n₁ = number of Na⁺ ions = 2.68 x 10¹⁶
q₁ = charge due to Na⁺ ions = n₁ q = (2.68 x 10¹⁶) (1.6 x 10⁻¹⁹) = 0.004288 C
n₂ = number of Cl⁻ ions = 3.92 x 10¹⁶
q₂ = charge due to Cl⁻ ions = n₂ q = (3.92 x 10¹⁶) (1.6 x 10⁻¹⁹) = 0.006272 C
i₁ = Current due to Na⁺ ions = = = 0.004288 A
i₂ = Current due to Cl⁻ ions = = = 0.006272 A
Current passing between the electrodes is given as
i = i₁ + i₂
i = 0.004288 + 0.006272
i = 0.01056 A
i = 10.6 x 10⁻³ A
i = 10.6 mA