Answer:
<em>a) 3.6 ft</em>
<em>b) 12.4 ft</em>
Explanation:
Distance between mirrors = 6.2 ft
difference from from the mirror you face = 1.8 ft
a) you stand 1.8 ft in front of the mirror you face.
According to plane mirror rules, the image formed is the same distance inside the mirror surface as the distance of the object (you) from the mirror surface. From this,
your distance from your first "front" image = 1.8 ft + 1.8 ft = <em>3.6 ft</em>
b) The mirror behind you is 6.2 - 1.8 = 4.4 ft behind you.
the back mirror will be reflected 3.6 + 4.4 = 8 ft into the front mirror,
the first image of your back will be 4.4 ft into the back mirror,
therefore your distance from your first "back" image = 8 + 4.4 = <em>12.4 ft</em>
Answer:
When they are connected in series
The 50 W bulb glow more than the 100 W bulb
Explanation:
From the question we are told that
The power rating of the first bulb is 
The power rating of the second bulb is 
Generally the power rating of the first bulb is mathematically represented as

Where
is the normal household voltage which is constant for both bulbs
So

substituting values

Thus the resistance of the second bulb would be evaluated as

From the above calculation we see that

This power rating of the first bulb can also be represented mathematically as

This power rating of the first bulb can also be represented mathematically as

Now given that they are connected in series which implies that the same current flow through them so

This means that

So when they are connected in series

This means that the 50 W bulb glows more than the 100 \ W bulb
Answer:
v = 20.31 m/s
Explanation:
p = mv -> v = p/m = 32,500 kg*m/s / 1,600 kg = 20.31 m/s
Green: nm 495–570. Yellow: nm 570–590. 590–620 nm for orange. Red: 620-750 nm (400–484 THz frequency)
Solids' molecules are strongly attracted to one another. As a result, the molecules are barely moving and tightly packed. Because of this, shape and volume are fixed.
The forces of attraction and repulsion in liquids are comparable. Compared to the solid state, they move a little bit more. They then assume the shape of the container while still having a fixed capacity.
The attraction forces between the molecules in gases are quite weak. They move quite freely and grow in an effort to fill as much space as they can. Consequently, their volume and shape vary (adopt the shape of the container).
You can learn more about states of the matter here:
brainly.com/question/18538345
#SPJ4
<span>If the refrigerator weights 1365 and you are not exerting any vertical force on it, then the normal force is also 1365N. so Fn=1365
Fsf = Static frictional force = (coefficient of static friction) * (Normal force)
So the least for you could exert to move it is equal to the Fsf.
Fsf = (0.49)(1365N)</span><span>
</span>