Answer: 6.47m/s
Explanation:
The tangential speed can be defined in terms of linear speed. The linear speed is the distance traveled with respect to time taken. The tangential speed is basically, the linear speed across a circular path.
The time taken for 1 revolution is, 1/3.33 = 0.30s
velocity of the wheel = d/t
Since d is not given, we find d by using formula for the circumference of a circle. 2πr. Thus, V = 2πr/t
V = 2π * 0.309 / 0.3
V = 1.94/0.3
V = 6.47m/s
The tangential speed of the tack is 6.47m/s
Answer:
M' = μ₀n₁n₂πr₂²
Explanation:
Since r₂ < r₁ the mutual inductance M = N₂Ф₂₁/i₁ where N₂ = number of turns of solenoid 2 = n₂l where n₂ = number of turns per unit length of solenoid 2 and l = length of solenoid, Ф₂₁ = flux in solenoid 2 due to magnetic field in solenoid 1 = B₁A₂ where B₁ = magnetic field due to solenoid 1 = μ₀n₁i₁ where μ₀ = permeability of free space, n₁ = number of turns per unit length of solenoid 1 and i₁ = current in solenoid 1. A₂ = area of solenoid 2 = πr₂² where r₂ = radius of solenoid 2.
So, M = N₂Ф₂₁/i₁
substituting the values of the variables into the equation, we have
M = N₂Ф₂₁/i₁
M = N₂B₁A₂/i₁
M = n₂lμ₀n₁i₁πr₂²/i₁
M = lμ₀n₁n₂πr₂²
So, the mutual inductance per unit length is M' = M/l = μ₀n₁n₂πr₂²
M' = μ₀n₁n₂πr₂²