Answer:
g' = 10.12m/s^2
Explanation:
In order to calculate the acceleration due to gravity at the top of the mountain, you first calculate the length of the pendulum, by using the information about the period at the sea level.
You use the following formula:
(1)
l: length of the pendulum = ?
g: acceleration due to gravity at sea level = 9.79m/s^2
T: period of the pendulum at sea level = 1.2s
You solve for l in the equation (1):

Next, you use the information about the length of the pendulum and the period at the top of the mountain, to calculate the acceleration due to gravity in such a place:

g': acceleration due to gravity at the top of the mountain
T': new period of the pendulum

The acceleration due to gravity at the top of the mountain is 10.12m/s^2
The answer would be B.
<span>
Standard deviation basically measures how spread out the values are. Without solving, you can easily tell which one among your choices have a smaller deviation. The closer the values are to each other the smaller the standard deviation. The values of choice B are the closest together, so you can assume that they have the smallest standard deviation. </span>
Keremiad<span> is a long literary work, usually in prose, but sometimes in verse, in which the author bitterly laments the state of society and its morals in a serious tone of sustained invective, and always contains a prophecy of society's imminent downfall. </span>
Answer:
Bounce 1 , pass 3, emb2
Explanation:
(By the way I am also doing that question on College board physics page) For the Bounce arrow, since it bumps into the object and goes back, it means now it has a negative momentum, which means a larger momentum is given to the object. P=mv, so the velocity is larger for the object, and larger velocity means a larger kinetic energy which would result in a larger change in the potential energy. Since K=0.5mv^2=U=mgh, a larger potential energy would have a larger change in height which means it has a larger angle θ with the vertical line. Comparing with the "pass arrow" and the "Embedded arrow", the embedded arrow gives the object a larger momentum, Pi=Pf (mv=(M+m)V), it gives all its original momentum to the two objects right now. (Arrow and the pumpkin), it would have a larger velocity. However for the pass arrow, it only gives partial of its original momentum and keeps some of them for the arrow to move, which means the pumpkin has less momentum, means less velocity, and less kinetic energy transferred into the potential energy, and means less change in height, less θangle. So it is Bounce1, pass3, emb2.