Answer:
1.53m
Explanation:
Given parameters:
Mass of box = 3kg
Gravitational potential energy = 45J
Unknown
Height of the box = ?
Solution:
To solve this problem;
Gravitational potential energy = mgh
m is the mass
g is the acceleration due to gravity
h is the height
45 = 3 x 9.8 x h
h = 1.53m
The shot putter should get out of the way before the ball returns to the launch position.
Assume that the launch height is the reference height of zero.
u = 11.0 m/s, upward launch velocity.
g = 9.8 m/s², acceleration due to gravity.
The time when the ball is at the reference position (of zero) is given by
ut - (1/2)gt² = 0
11t - 0.5*9.8t² = 0
t(11 - 4.9t) = 0
t = 0 or t = 4.9/11 = 0.45 s
t = 0 corresponds to when the ball is launched.
t = 0.45 corresponds to when the ball returns to the launch position.
Answer: 0.45 s
False. They are arranged in a structure called a crystal lattice
Answer:
<h2><em>
6000 counts per second</em></h2>
Explanation:
If a sample emits 2000 counts per second when the detector is 1 meter from the sample, then;
2000 counts per second = 1 meter ... 1
In order to know the number of counts per second that would be observed when the detector is 3 meters from the sample, we will have;
x count per second = 3 meter ... 2
Solving the two expressions simultaneously for x we will have;
2000 counts per second = 1 meter
x counts per second = 3 meter
Cross multiply to get x
2000 * 3 = 1* x
6000 = x
<em></em>
<em>This shows that 6000 counts per second would be observed when the detector is 3 meters from the sample</em>
Here is the answer to the given question above. If Angela has been feeling fatigued and a test is used to check the basal metabolic rate and revealed that she has a low metabolic rate, therefore, the possible diagnosis for Angela would be HYPOTHYROIDISM. <span>The BMR test works by precisely measuring the amount of oxygen that you consume when your body is basal, or completely at rest. Hope this answers your question.</span>