The answer to your question is "A. a lower frequency of the siren.
Because the person in back of the ambulance will hear a lower frequency of the siren. This is because the waves are stretched out. A longer wavelength results in a lower frequency.
Answer:
B=0.2T
Explanation:
given required solution
l=4m B=? <em>F</em><em>=</em><em>BIL</em>
i=0.5A B=F/IL
F=0.4N B=0.4N/0.5A*4m
B=0.4/2=0.2T
Your answer is 8. You add 2 + 1 + 5.3 to get 8.3. You round down to 8 because of the sig fig rules.
Answer:
η = 0.882 = 88.2 %
Explanation:
The efficiency of the pulley system can be given as follows:

where,
η = efficiency of pulley system = ?
W_out = Output Work = (600 N)(0.6 m) = 360 J
W_in = Input Work = (35.7 N)(11.43 m) = 408.051 J
Therefore,

<u>η = 0.882 = 88.2 %</u>
To stop instantly, you would need infinite deceleration. This in turn, requires infinite force, as demonstrable with this equation:F=ma<span>So when you hit a wall, you do not instantly stop (e.g. the trunk of the car will still move because the car is getting crushed). In a case of a change in momentum, </span><span><span>m<span>v⃗ </span></span><span>m<span>v→</span></span></span>, we can use the following equation to calculate force:F=p/h<span>However, because the force is nowhere close to infinity, time will never tend to zero either, which means that you cannot come to an instantaneous stop.</span>