Explanation:
Total mass=100+10=110
Total weight=mass×gravitational field strength
=110×10
=1100N
Work done=force×distance
=1100×10
=11000J
<em>Please mark me as brainliest if this helped you!</em>
Answer:
2.2 s
Explanation:
Hi!
Let's consider the origin of the coordinate system at the ground, and consider that the clam starts with zero velocity, the equation of motion of the clam is given by

We are looking for a time t for which x(t) = 0

Solving for t:

Rounding at the first decimal:
t = 2.2 s
Answer:
u = 449 m/s
Explanation:
Given,
Mass of the bullet, m = 26 g
Mass of the wooden block,M = 4.7 Kg
height of the block,h = 0.31 m
initial speed of the block, u = ?
Using conservation of energy




v = 2.47 m/s
Now, using conservation of momentum to calculate the speed of the bullet.
m u + M u' = (M+m)v
m u = (M+m)v
0.026 x u = (4.7+0.026) x 2.47
u = 449 m/s
Hence, the speed of the bullet is equal to 449 m/s.
The previous part of the exercise says:
"<span>Engineers are designing a system by which a falling mass m imparts kinetic energy to a rotating uniform drum to which it is attached by thin, very light wire wrapped around the rim of the drum. There is no appreciable friction in the axle of the drum, and everything starts from rest. This system is being tested on Earth, but it is to be used on Mars, where the acceleration due to gravity is 3.71 m/s². In the Earth tests, when m is set to 18.0 kg and allowed to fall through 5.50 m, it gives 300.0 J of kinetic energy to the drum."
Since Kearth = Kmars, we have, for conservation of energy, that also the potential energies must be equal:
Uearth = Umars
which means:
m </span>· gearth · hearth = m · gmars <span>· hmars
we can solve for hmars:
hmars = (gearth / gmars) </span>· hearth
= (9.8 / 3.71) · 5.50
= 14.53m
Therefore, the correct answer will be: the mass would have to fall from an height of 14.53m.