Answer:
The answer to your question is
1.-Fe₂O₃
2.- 280 g
3.- 330 g
Explanation:
Data
mass of CO = 224 g
mass of Fe₂O₃ = 400 g
mass of Fe = ?
mass of CO₂
Balanced chemical reaction
Fe₂O₃ + 3CO ⇒ 2Fe + 3CO₂
1.- Calculate the molar mass of Fe₂O₃ and CO
Fe₂O₃ = (56 x 2) + (16 x 3) = 160 g
CO = 12 + 16 = 28 g
2.- Calculate the proportions
theoretical proportion Fe₂O₃ /3CO = 160/84 = 1.90
experimental proportion Fe₂O₃ / CO = 400/224 = 1.78
As the experimental proportion is lower than the theoretical, we conclude that the Fe₂O₃ is the limiting reactant.
3.- 160 g of Fe₂O₃ --------------- 2(56) g of Fe
400 g of Fe₂O₃ --------------- x
x = (400 x 112) / 160
x = 280 g of Fe
4.- 160 g of Fe₂O₃ --------------- 3(44) g of CO₂
400 g of Fe₂O₃ -------------- x
x = (400 x 132)/160
x = 330 gr
Answer:
the molarity is 3.68 moles/L
Explanation:
the molality of the solution of sucrose is
m= moles of glucose / Kg of solvent (water)= 6.81 ,
since the molecular weight of glucose is 180.156 gr/mole , then per each kilogram of solvent there is
6.81 moles*180.156 gr/mole + 1000 gr of water = 2226.86 gr of solution
from the density
volume of solution = mass of solution/density = 2286.86 gr / 1.2 gr/ml = 1855.71 ml
therefore there is 1000 gr of water in 1855.71 ml
then the molarity M is
M= moles of glucose / L of solution = (moles of glucose / Kg of solvent) * (Kg of solvent/L of solution) = 6.81 moles/Kg * 1Kg/1.85 L = 3.68 moles/L
M= 3.68 moles/L
Note:
- Would be wrong in this case to assume density of water = 1 Kg/L since the solution is heavily concentrated in glucose and therefore the density of water deviates from its pure value.
Buffer solution resist the change in pH upon addition of small amount of strong acid or strong base.
Buffer consists of weak acid as HF / and its conjugate base NaF
When strong acid as HCl is added to buffer, it respond with its conjugate base to convert the strong acid to weak acid like this:
HCl (S.A) + NaF → NaCl + HF (W.A)
moles of HF we already have = M * V(in liters)
= 0.0955 M * 0.033 L = 3.15 x 10⁻³ mole
moles of HCl added = 8.00 x 10⁻⁵ mole
one mole HCl reacts with 1 mole NaF to give 1 mole HF
so the amount added to HF = 8.00 x 10⁻⁵
Total moles of HF present = (3.15 x 10⁻³) + (8.00 x 10⁻⁵) = 3.23 x 10⁻³ mole
Answer:
Fluorine
General Formulas and Concepts:
<u>Chemistry</u>
- Reading a Periodic Table
- Periodic Trends
- Electronegativity - the tendency for an element to attract an electron to itself
- Z-effective and Coulomb's Law, Forces of Attraction
Explanation:
The Periodic Trend for Electronegativity is up and to the right of the Periodic Table.
Fluorine is Element 9 and has 9 protons. Radium is Element 88 and has 88 protons. Therefore, Radium has a bigger Zeff than Flourine.
However, since Radium is in Period 7 while Fluorine is in Period 2, Radium has more core e⁻ than Fluorine does. This will create a much larger shielding effect, causing Radium's outermost e⁻ to have less FOA between them. Fluorine, since it has less core e⁻, the FOA between the nucleus and outershell e⁻ will be much stronger.
Therefore, Fluorine would attract an electron more than Radium, thus bringing us to the conclusion that Fluorine has a higher electronegativity.
Answer:
the answer to number 9 is A.
Explanation: