An object has undergone acceleration if ...
-- it's moving faster than it was before
or
-- it's moving slower than it was before
or
-- it's moving in a different direction that it was before.
The distance of an object from the mirror's vertex if the image is real and has the same height as the object is 39 cm.
<h3>What is concave mirror?</h3>
A concave mirror has a reflective surface that is curved inward and away from the light source.
Concave mirrors reflect light inward to one focal point and it usually form real and virtual images.
<h3>
Object distance of the concave mirror</h3>
Apply mirrors formula as shown below;
1/f = 1/v + 1/u
where;
- f is the focal length of the mirror
- v is the object distance
- u is the image distance
when image height = object height, magnification = 1
u/v = 1
v = u
Substitute the given parameters and solve for the distance of the object from the mirror's vertex
1/f = 1/v + 1/v
1/f = 2/v
v = 2f
v = 2(19.5 cm)
v = 39 cm
Thus, the distance of an object from the mirror's vertex if the image is real and has the same height as the object is 39 cm.
Learn more about concave mirror here: brainly.com/question/27841226
#SPJ1
The orbiting velocity of the satellite is 4.2km/s.
To find the answer, we need to know about the orbital velocity of a satellite.
<h3>What's the expression of orbital velocity of a satellite?</h3>
- Mathematically, orbital velocity= √(GM/r)
- r = radius of the orbital, M = mass of earth
<h3>What's the orbital velocity of a satellite orbiting earth with a radius 3.57 times the earth radius?</h3>
- M= 5.98×10²⁴ kg, r= 3.57× 6.37×10³ km = 22.7×10⁶m
- Orbital velocity= √(6.67×10^(-11)×5.98×10²⁴/22.7×10⁶)
=4.2km/s
Thus, we can conclude that the orbiting velocity of the satellite is 4.2km/s.
Learn more about the orbital velocity here:
brainly.com/question/22247460
#SPJ1
velocity is magnitude and direction. its unit is meter per second
According to your formula, because Th>Tc, the density of hot air greater than the density of cold air.<span>Hint: You can rearrange the ideal gas law to get </span>
<span>Reference https://www.physicsforums.com/threads/density-of-hot-air.528991/</span>