Answer:
Hey, bro here is the explanation....
Explanation:
Hope it helps...
The velocity of an electron that has been accelerated through a difference of potential of 100 volts will be 5.93 *
m/s
Electrons move because they get pushed by some external force. There are several energy sources that can force electrons to move. Voltage is the amount of push or pressure that is being applied to the electrons.
By conservation of energy, the kinetic energy has to equal the change in potential energy, so KE=q*V. The energy of the electron in electron-volts is numerically the same as the voltage between the plates.
given
charge of electron = 1.6 ×
C
mass of electron = 9.1 ×
kg
Force in an electric field = q*E
potential energy is stored in the form of work done
potential energy = work done = Force * displacement
= q * (E * d)
= q * (V) = 1.6 ×
* 100
stored potential energy = kinetic energy in electric field
kinetic energy = 1/2 * m * 
= 1/2 * 9.1 ×
* 
equation both the equations
1/2 * 9.1 ×
*
= 1.6 ×
= 0.352 *
m/s
= 35.2 * 
= 5.93 *
m/s
To learn more about kinetic energy in electric field here
brainly.com/question/8666051
#SPJ4
<span>There is six horizen.
1. O Horizon - The top, organic layer of soil,
2. A Horizon - The layer called topsoil;
3. E Horizon - This layer is beneath the A Horizon and above the
B Horizon. It is made up mostly of sand.
4. B Horizon - Also called the subsoil - this layer is beneath the E
Horizon and above the C Horizon.
5. C Horizon - it's called regolith: the layer beneath the B Horizon
and above the R Horizon.
6 R Horizon - this is last and the unweathered rock layer that is
beneath all the other layers.</span>
Answer:
Explanation:
We shall apply conservation of mechanical energy
kinetic energy of alpha particle is converted into electric potential energy.
1/2 mv² = k q₁q₂/d , d is closest distance
d = 2kq₁q₂ / mv²
= 2 x 9 x 10⁹ x 79e x 2e / 4mv²
= 1422 x2x (1.6 x 10⁻¹⁹)² x 10⁹ /4x 1.67 x 10⁻²⁷ x (1.5 x 10⁷)²
= 3640.32 x 10⁻²⁹ /2x 3.7575 x 10⁻¹³
= 484.4 x 10⁻¹⁶
=48.4 x 10⁻¹⁵ m
Answer:
Part 1) Time of travel equals 61 seconds
Part 2) Maximum speed equals 39.66 m/s.
Explanation:
The final speed of the train when it completes half of it's journey is given by third equation of kinematics as

where
'v' is the final speed
'u' is initial speed
'a' is acceleration of the body
's' is the distance covered
Applying the given values we get

Now the time taken to attain the above velocity can be calculated by the first equation of kinematics as

Since the deceleration is same as acceleration hence the time to stop in the same distance shall be equal to the time taken to accelerate the first half of distance
Thus total time of journey equals
Part b)
the maximum speed is reached at the point when the train ends it's acceleration thus the maximum speed reached by the train equals 