Answer:
(a) 104 N
(b) 52 N
Explanation:
Given Data
Angle of inclination of the ramp: 20°
F makes an angle of 30° with the ramp
The component of F parallel to the ramp is Fx = 90 N.
The component of F perpendicular to the ramp is Fy.
(a)
Let the +x-direction be up the incline and the +y-direction by the perpendicular to the surface of the incline.
Resolve F into its x-component from Pythagorean theorem:
Fx=Fcos30°
Solve for F:
F= Fx/cos30°
Substitute for Fx from given data:
Fx=90 N/cos30°
=104 N
(b) Resolve r into its y-component from Pythagorean theorem:
Fy = Fsin 30°
Substitute for F from part (a):
Fy = (104 N) (sin 30°)
= 52 N
The free-body diagram of the forces acting on the flag is in the picture in attachment.
We have: the weight, downward, with magnitude

the force of the wind F, acting horizontally, with intensity

and the tension T of the rope. To write the conditions of equilibrium, we must decompose T on both x- and y-axis (x-axis is taken horizontally whil y-axis is taken vertically):


By dividing the second equation by the first one, we get

From which we find

which is the angle of the rope with respect to the horizontal.
By replacing this value into the first equation, we can also find the tension of the rope:
Answer:
The mass of object is calculated as 5.36 kg
Explanation:
The known terms to find the mass are:
acceleration of object (a) = 22.35 
Force exerted (F) = 120N
mass of an object (m) = ?
From Newton's second law of motion;
F = ma
or, 120 = m × 22.35
or, m=
kg
∴ m = 5.36 kg
Explanation:
hope this answer was helpful
Answer:
Miter joint
Explanation:
Made by fastening together usually perpendicular parts with the ends cut at an angle