Answer:
1. Motion
2. Empty space
3. Far apart
4. Independently
5. Random or rapid
6. Collision
7. Kinetic energy
8. Atmospheric
9. 273 Kelvin or 0° Celsius
10. 1 atm, 101.3 kPa or 760 mmHg
Explanation:
In science, matter can be defined as anything that has mass and occupies space. Any physical object that is found on earth is typically composed of matter. Matter are known to be made up of atoms and as a result has the property of existing in states.
Generally, matter exists in three (3) distinct or classical phases and these are;
I. Gas.
II. Solid.
III. Liquid.
Filling the missing words or texts in the question, we have;
The kinetic theory describes the motion of particles in matter and the forces of attraction between them. The theory assumes that the volume occupied by a gas is mostly empty space, that the particles of gas are relatively far apart, move independently of each other, and are in constant random or rapid motion. The collision between particles are perfectly elastic so that the total kinetic energy remains constant. Gas pressure results from the simultaneous collisions of billions of particles with an object. Barometers are used to measure atmospheric pressure. Standard conditions are defined as a temperature of 273 Kelvin or 0° Celsius and a pressure of 1 atm, 101.3 kPa or 760 mmHg.
Answer:
The peak-to-peak ripple voltage = 2V
Explanation:
120V and 60 Hz is the input of an unfiltered full-wave rectifier
Peak value of output voltage = 15V
load connected = 1.0kV
dc output voltage = 14V
dc value of the output voltage of capacitor-input filter
where
V(dc value of output voltage) represent V₀
V(peak value of output voltage) represent V₁
V₀ = 1 - (
)V₁
make C the subject of formula
V₀/V₁ = 1 - (1 / 2fRC)
1 / 2fRC = 1 - (v₀/V₁)
C = 2fR ((1 - (v₀/V₁))⁻¹
Substitute for,
f = 240Hz , R = 1.0Ω, V₀ = 14V , V₁ = 15V
C = 2 * 240 * 1 (( 1 - (14/15))⁻¹
C = 62.2μf
The peak-to-peak ripple voltage
= (1 / fRC)V₁
= 1 / ( (120 * 1 * 62.2) )15V
= 2V
The peak-to-peak ripple voltage = 2V
<h3><u>Answer;</u></h3>
The different atoms have different quantized energy levels
<h3><u>Explanation;</u></h3>
- The atoms of different elements have different energy levels because they have different nuclear charges and spins, and different numbers of electrons.
- Each different kind of atom, like hydrogen or radon, has a distinct nuclear charge and number of electrons. This makes the potential energy function different for each atom, and therefore results in different energy levels.
- In an emmission spectra, each bright band corresponds to a difference between energy levels within the atom.
Assuming the ball follows classical 2D projectile motion (moves in a parabola) and that the height y = the maximum height the ball goes in the y direction (because this would be its midpoint), then the velocity at height y is equal to the initial x component of velocity. At the midpoint, the y component is zero, so the velocity only depends on the x component. Projectiles move at constant speed in the x direction, so X = Xo. As long as you know actual values for Vi and either the initial angle or one initial component, then you can solve for Xo using trigonometry. Xo is thus the velocity of the ball once it has reached its maximum height.