Answer:
MIXTURE , ELEMENT AND SUBSTANCE
<h3><u>Answer;</u></h3>
<u>= 5 M or 5 moles/liter</u>
<h3><u>Explanation;</u></h3>
At point E, 90 g of substances X are dissolved in 100 g of the solvent.
100g of the solvent is equal to 100 ml
Molarity is the number of moles of a substance in one liter of a solvent.
90 g of X are in 100 ml
But; the RFM of X = 180 g/l
Therefore; the moles of X in 90 g = 90/180
= 0.5 moles
Therefore;
0.5 moles of X are contained in 100 ml of the solvent;
Thus, molarity = 0.5 × 1000/100
=<u> 5 M or 5 moles/liter</u>
Here is your answer

REASON:
Elements which have 4 valence electrons are generally metalloids.
The metalloids show the properties of both metals and non-metals.
We know that,
no. of protons= Atomic number
So,
Atomic no.= 32
Hence,
The element is Germanium which is a metalloid with 4 valence electrons and has 32 protons in nucleus of each atom because it has atomic no. 32
HOPE IT IS USEFUL
Answer:
Explained below
Explanation:
The human body has a normal core temperature of around 37°C to 38°C.
Now, if it is heated up to say 39° to 40°C, fatigue will start to set in and the brain begins to tell the muscles to slow down.
If it's now heated to higher temperatures above above 41°C, the body will begin to experience heat exhaustion and therefore will start to shut down.
Due to this process, the body can't even sweat at that stage because blood flow to the skin will stops thereby making the body feel cold and clammy. Thus, chemical processes/reaction in the body will begin to be affected and the cells inside the body will start to deteriorate and thus there is now a huge risk of having multiple organ failure.
Row or periods have in common is the valence electron count. The valence electron count goes up as you move across the periodic table. Also atomic size gets smaller as you move from left to right