Answer:
The second vector
points due West with a magnitude of 600N
Explanation:
The original vector
points with a magnitude of 200N due east, the Resultant vector
points due west (that's how east/west direction can be interpreted, from east to west) with a magnitude of 400N. If we choose East as the positive direction and West as the negative one, we can write the following vectorial equation:

With the negative sign signifying that the vector points west.
The answer to this question is "Buffeting". This is an unusual strong wind condition that resulted in the loss of vehicle control. This condition occurs in roads and bridges, across and along mountains that affected vehicles control. The drivers must be alert and put their full attention to overcome this condition.
I can't eliminate answers. Some of them are just wrong. A is incorrect. There is no such thing as a 1 pole magnet.
I wouldn't use B. If it is just a bar it is not a magnet.
C is the traditional answer
D is a space filler. It is just there to occupy a letter.
Answer:
The question is somewhat vague in that acceleration is not exactly defined:
Usually a = (v2 - v1) / t which would imply that
a = 32 / g = 32 / 9.8 = 3.27 the acceleration due to change in speed of the rocket
One can also say that the astronaut experiences an acceleration of 9.8 m/s^2 just by being motionless on the surface of the earth.
Then a = (32 - 9.8) / 9.8 = 2.27 due to the acceleration of the rocket
If we assume the first condition then
F = 65 kg * 3.27 * 9.8 m/s^2 = 2083 N
Weight is equivalent to the product of the mass of an object and the strength of the gravitational field.
Using:
F = ma
a = 8.2 / 5
a = 1.64 N/kg
The gravitational field strength is equivalent to 1.64 N/kg.