Answer:
D mass of the iron rod
Explanation:
A) the length of the iron rod.
B) the thermal conductivity of iron.
C) the temperature difference between the ends of the rod.
D) the mass of the iron rod.
E) the duration of the time interval
<em>The amount of heat that will flow through an iron rod whose two ends are maintained at different temperatures would depend on the thermal conductivity of the iron, the temperature difference between the two ends, the length of the iron rod, and the duration of flow of heat. </em>
The thermal conductivity of any material is an indication of the ability of the materials to conduct heat. The higher the thermal conductivity, the higher the amount of heat a material can conduct within a specified period. Hence, the amount of heat that will flow through the iron rod depends on its thermal conductivity.
The temperature difference between two solid materials depends on the amount of heat that will flow across the materials by conduction. The higher the difference, the more the amount of heat that will flow. Hence, the amount of heat that would be conducted depends on the temperature difference between the two ends of the iron rod
The amount of heat that would move my conduction also depends on the distance that would be traveled by the heat. Due to heat loss to the surrounding, the shorter the distance, the more the heat and vice versa. Hence, the amount of heat that will flow through an iron rod depends on the length of the iron rod.
The duration of flow also dictates the amount of heat that will flow between two regions by conduction. The more the duration, the more the heat, provided that other conditions remain constant.
<em>The only option that the amount of heat that would be conducted does not depend on is the </em><em>mass of the iron rod.</em>
<em>The correct option is </em><em>D.</em>