As far as I can tell the best answer for this would be (A) Neon. However, I would argue that this is at the very least a misleading question. Atoms are less identified by their electrons than their protons (which is represented always by its atomic number). Although atoms can gain or lose electrons, the protons would never change (and remain the same element). Personally, I would have written the question as, "When Magnesium loses its valence electrons, its new number of electrons would most closely resemble _____"
Answer: To test the properties of the particles, Thomson placed two oppositely-charged electric plates around the cathode ray. The cathode ray was deflected away from the negatively-charged electric plate and towards the positively-charged plate. This indicated that the cathode ray was composed of negatively-charged particles.
Thomson also placed two magnets on either side of the tube, and observed that this magnetic field also deflected the cathode ray. The results of these experiments helped Thomson determine the mass-to-charge ratio of the cathode ray particles, which led to a fascinating discovery−-−minusthe mass of each particle was much, much smaller than that of any known atom. Thomson repeated his experiments using different metals as electrode materials, and found that the properties of the cathode ray remained constant no matter what cathode material they originated from. From this evidence, Thomson made the following conclusions:
The cathode ray is composed of negatively-charged particles.
The particles must exist as part of the atom, since the mass of each particle is only ~1/2000 the mass of a hydrogen atom.
These subatomic particles can be found within atoms of all elements.
While controversial at first, Thomson's discoveries were gradually accepted by scientists. Eventually, his cathode ray particles were given a more familiar name: electrons. The discovery of the electron disproved the part of Dalton's atomic theory that assumed atoms were indivisible. In order to account for the existence of the electrons, an entirely new atomic model was needed.
Answer:
Water is a polar solvent
Explanation:
We must know that pure dry hydrogen chloride gas does not show any acidic property.
In fact, when hydrogen chloride is dissolved in water, it breaks up into H3O^+ ions and Cl^- ions. This is possible because water is a polar solvent and assists the ionization of HCl.
In nonpolar solvents such as benzene, hydrogen chloride gas is not ionized hence it does not show any acidic property in a benzene solution.