The electron configuration that belongs to the atom with the lowest first ionization energy is francium.
<h3>What is ionization energy? </h3>
Ionization energy is defined as the minimum amount of energy required to remove the most loosely electron present in outermost shell.
<h3>Ionization energy across period</h3>
Ionization energy increase as we move from left to right in the period. This can be explained as when we move from left to right along period new electron is added to the same shell which increase the nuclear charge. Hence results int he decrease in size. Due to this decrease in size more energy is required to remove electron from outermost shell.
<h3>Ionization energy along group</h3>
Ionization energy decrease as we move from top to bottom along group. This can be explained as we move from top to bottom new electron is added to new shell. Due to addition of new shell the size of atom increases which results in the decrease in the nuclear charge. Due to this less amount of energy is needed to remove an electron.
Thus, we concluded that the electron configuration that belongs to the atom with the lowest first ionization energy is francium.
learn more about ionization energy:
brainly.com/question/1602374
#SPJ4
Answer:
The rows on the periodic table are called periods. All the elements in a period have valence electrons in the same shell. The number of valence electrons increases from left to right in the period. When the shell is full, a new row is started and the process repeats.
<h2>
I hope it helps plz let me know if it is right or wrong.</h2>
Answer: Hydrogen bonds
Explanation: Hydrogen bonds allow two molecules to link together temporarily. Water molecules are made up of two hydrogen atoms and one oxygen atom, held together by polar covalent bonds.