Calcium is stored in bones in the body
A mole is equal to 6.02x10^23, so one mole of H2O has 6.02x10^23 water molecules. To get how many of them are in 6 moles you need to multiple it by six:
(6.02x10^23)x6= 3.612x10^24
So, there’s 3.612x10^24 water molecules in 6 moles of water
Answer:
0.0890 M
Explanation:
Since the concentration of KCl is irrelevant in this case, the concentration of Na2S2O3 can be determined using a simple dilution equation:
C1V1 = C2V2, where C1 = 0.149 M, V1 = 150 mL, V2 = 250 mL
C2 = 0.149 x 150/250
= 0.089 M
To determine the concentration of S2O32- (aq), consider the equation:

The concentration of Na2S2O3 and S2O32- (aq) is 1:1
Hence, the concentration in molarity of S2O32- (aq) is 0.089 M.
To 3 significant figures = 0.0890 M
Answer:
Explanation:
<em>2. A 10 kg bowling ball would require what force to accelerate down an alleyway at a rate of 3m/s² ?</em>
Notice that I completed the question with the garbled and missing values:
<u>Data:</u>
<u />
<u>Physical principles:</u>
- Newton's second law:

<u>Solution:</u>

<em></em>
<em>3. Salty has a car that accelerates at 5 m/s². If the car has a mass of 1000 kg, how much force does the car produce?</em>
Notice that I arranged the typos.
<u />
<u>Data:</u>
<u>Physical principles:</u>
- Newton's second law:

<u>Solution:</u>

<em>4. What is the mass of a falling rock if it produces a force of 147 N?</em>
<u>Data:</u>
<u>Physical principles:</u>
- neglecting air resistance ⇒ a = g: gravitational acceleration: 9.8m/s²
- Newton's second law:

<u>Solution:</u>
- Clear m from Newton's second law

- Substitute with F = 147 N and a = g = 9.8m/s², and compute

<em></em>
<em>5. What is the mass of a truck if it produces a force of 14,000 N while accelerating at a rate of 5 m/s²?</em>
<u>Data:</u>
<u>Physical principles:</u>
- Second Newton's law:

<u>Solution:</u>
- Clear m from Newton's second law

- Substitute with F = 14,000 N and a = 5m/s², and compute

Answer:
14.61 g NaCl
Explanation:
Molarity = moles / volume of solution (litres)
0.500 = moles / 0.500 L
moles = 0.25
Molar mass of NaCl is 58.44 g NaCl /1 mol NaCl.
0.25 moles NaCl x 58.44 g NaCl /1 mol NaCl
= 14.61 g NaCl