Answer:
625.46 °C
Explanation:
We'll begin by converting 19 °C to Kelvin temperature. This can be obtained as follow:
T(K) = T(°C) + 273
T(°C) = 19 °C
T(K) = 19 °C + 273
T(K) = 292 K
Next, we shall determine the Final temperature. This can be obtained as follow:
Initial volume (V₁) = 3.25 L
Initial temperature (T₁) = 292 K
Final volume (V₂) = 10 L
Final temperature (T₂) =?
V₁/T₁ = V₂/T₂
3.25 / 292 = 10 / T₂
Cross multiply
3.25 × T₂ = 292 × 10
3.25 × T₂ = 2920
Divide both side by 3.25
T₂ = 2920 / 3.25
T₂ = 898.46 K
Finally, we shall convert 898.46 K to celsius temperature. This can be obtained as follow:
T(°C) = T(K) – 273
T(K) = 898.46 K
T(°C) = 898.46 – 273
T(°C) = 625.46 °C
Therefore the final temperature of the gas is 625.46 °C
Answer:
Waters' boiling point decreases with increases in elevation because of the atmospheric pressure.
For example, the higher in elevation you are. The lower the atmospheric pressure is. In other words heated water reached boiling point quicker.
Maple syrup would be categorized under solutions. As it contains sugar which is very soluble in water, it dissolves completely in water depending on its solubility at that temperature making it impossible for the components to be filtered out. A solution is a homogeneous mixture.
Atomic radius defines the size of an atom.
Explanation:
Atomic radius is defined as “one-half the distance between the nuclei of two identical atoms that are bonded together.” If ‘r’ is the atomic radius and ‘d’ the distance in between nuclei of two atoms that are identical and bonded, then r = d/2.
The units used to express atomic radius are picometer, nanometer, and Angstroms.
In the periodic table, the atomic radius of elements decreases with elements across a <em>period</em> (left-right) and increases with elements down a group.