Answer:
6.50 g of Hydrogen
Explanation:
We know that in every 20.0g of sucrose, there are 1.30g of hydrogen.
We now have 100.0g of sucrose. 100.0g is 5x larger than the 20.0g sample, which is a 5 : 1 ratio. Applying this ratio to the amount of hydrogen, we would have 5*1.3g of hydrogen in the 100.0g of sucrose.
5*1.3 = 6.5, so our answer is that there are 6.50g of hydrogen in 100.0g of sucrose.
Hope this helps!
Answer:
Explanation:
Ionization energy:
It is the minimum amount of energy required to remove the electron from isolated gaseous atom to make the ion.
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell.
When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required. Where as,
When we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus.
I guess it is gases
I think , coz it has its own shape
Moves randomly
Answer:
If you contact water with a gas at a certain temperature and (partial) pressure, the concentration of the gas in the water will reach an equilibrium ('saturation') according to Henry's law.
Explanation:
This means: if you increase the pressure (e.g. by keeping the vial closed), the CO2 concentration will increase. So it simply depends what concentration you need for your assay: 'CO2-saturated' water at low pressure or 'CO2-saturated' water at high pressure.
Answer:
In covalent bonding, the octet rule is important because sharing electrons gives both atoms a full valence shell. As a result, each atom can consider the shared electrons to be part of its own valence shell.
np :)