Answer:
Resultant displacement = 1222.3 m
Angle is 88.3 degree from +X axis.
Explanation:
A = 550 m north
B = 500 m north east
C = 450 m north west
Write in the vector form
A = 550 j
B = 500 (cos 45 i + sin 45 j ) = 353.6 i + 353.6 j
C = 450 ( - cos 45 i + sin 45 j ) = - 318.2 i + 318.2 j
Net displacement is given by
R = (353.6 - 318.2) i + (550 + 353.6 + 318.2) j
R = 35.4 i + 1221.8 j
The magnitude is

The direction is given by
Well, the tension in the thread will probably quadruple, but the hanging body will continue to just hang there.
The question gives us no evidence that it is doing any oscillating, and there's no reason for it to start just because it suddenly got heavier.
Answer: b. Throw it directly away from the space station.
Explanation:
According to <u>Newton's third law of motion</u>, <em>when two bodies interact between them, appear equal forces and opposite senses in each of them.</em>
To understand it better:
Each time a body or object exerts a force on a second body or object, it (the second body) will exert a force of equal magnitude but in the opposite direction on the first.
So, if the astronaut throws the wrench away from the space station (in the opposite direction of the space station), according to Newton's third law, she will be automatically moving towards the station and be safe.
Answer:
a.
b.
Explanation:
We are given that




a.We have to find the angle


b. We have to find the speed 
According to law of conservation of momentum


