Answer:
I think balanced
Explanation:
because there is a 2 on each arrow
Answer:
The equation of equilibrium at the top of the vertical circle is:
\Sigma F = - N - m\cdot g = - m \cdot \frac{v^{2}}{R}
The speed experimented by the car is:
\frac{N}{m}+g=\frac{v^{2}}{R}
v = \sqrt{R\cdot (\frac{N}{m}+g) }
v = \sqrt{(5\,m)\cdot (\frac{6\,N}{0.8\,kg} +9.807\,\frac{kg}{m^{2}} )}
v\approx 9.302\,\frac{m}{s}
The equation of equilibrium at the bottom of the vertical circle is:
\Sigma F = N - m\cdot g = m \cdot \frac{v^{2}}{R}
The normal force on the car when it is at the bottom of the track is:
N=m\cdot (\frac{v^{2}}{R}+g )
N = (0.8\,kg)\cdot \left(\frac{(9.302\,\frac{m}{s} )^{2}}{5\,m}+ 9.807\,\frac{m}{s^{2}} \right)
N=21.690\,N
Depends on how strong you are. People can hit it anywhere between a few inches and 500 yards.
Answer:
576 joules
Explanation:
From the question we are given the following:
weight = 810 N
radius (r) = 1.6 m
horizontal force (F) = 55 N
time (t) = 4 s
acceleration due to gravity (g) = 9.8 m/s^{2}
K.E = 0.5 x MI x ω^{2}
where MI is the moment of inertia and ω is the angular velocity
MI = 0.5 x m x r^2
mass = weight ÷ g = 810 ÷ 9.8 = 82.65 kg
MI = 0.5 x 82.65 x 1.6^{2}
MI = 105.8 kg.m^{2}
angular velocity (ω) = a x t
angular acceleration (a) = torque ÷ MI
where torque = F x r = 55 x 1.6 = 88 N.m
a= 88 ÷ 105.8 = 0.83 rad /s^{2}
therefore
angular velocity (ω) = a x t = 0.83 x 4 = 3.33 rad/s
K.E = 0.5 x MI x ω^{2}
K.E = 0.5 x 105.8 x 3.33^{2} = 576 joules