Answer:
Same reading.
Explanation:
Assume that after the string breaks the ball falls through the liquid with constant speed. If the mass of the bucket and the liquid is 1.20 kg, and the mass of the ball is 0.150 kg,
A.) Before the string break, the total weight = weight of the can + weight of the water.
According to Archimedes' Principle which state that: “A body immersed in a liquid loses weight by an amount equal to the weight of the liquid displaced.” Archimedes principle also states that: “When a body is immersed in a liquid, an upward thrust, equal to the weight of the liquid displaced, acts on it
B.) After the string break.
The scale will have the same reading as before the string break.
Based on the mass of the bob and the angle between the cord and the vertical, the pendulum length is 0.50m.
The maximum kinetic energy can be found to be 9.42 x 10⁻⁴J.
<h3>What is the pendulum length?</h3>
This can be found as:
= g-force / w²
Solving gives:
= 9.8 / 4.43²
= 0.4998 m
= 0.50 m
<h3>What is the maximum kinetic energy?</h3>
This can be found as:
= 0.5 × m × w² × A²
Maximum kinetic energy is:
= 0.5 × 60 × 10⁻³ × (4.43 × 0.4998 x 0.08 rad)²
= 9.42 x 10⁻⁴J
Find out more on maximum kinetic energy at brainly.com/question/24690095.
In classical mechanics, kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. For example, if a an object with a mass of 10 kg (m = 10 kg) is moving at a velocity of 5 meters per second (v = 5 m/s), the kinetic energy is equal to 125 Joules, or (1/2 * 10 kg) * 5 m/s2.
All of the electromagnetic energy radiated from the sun (and from
other stars) is the product of nuclear fusion in its core.
Answer:
Around 2.8212 sec
Explanation:
Given the eqn x=1/2at^2+vot
your vo=0
39=1/2(-9.8)t^2
=7.95=t^2
=2.82sec