Answer:
(b) both the temperature and pressure of the gas decrease.
Explanation:
An ideal gas undergoes an adiabatic expansion, a process in which no heat flows into or out of the gas. As a result, both the temperature and pressure of the gas decrease.
Gay Lussac states that when the volume of an ideal gas is kept constant, the pressure of the gas is directly proportional to the absolute temperature of the gas.
Mathematically, Gay Lussac's law is given by;

Also, according to the first law of thermodynamics which states that energy cannot be created or destroyed but can only be transformed from one form to another. Thus, the ideal gas does work on the environment with respect to the volume and temperature.
The net force on the block perpendicular to the floor is
∑ F[perp] = F[normal] - mg = 0
so that
F[normal] = (5 kg) g = 49 N
Then
F[friction] = 0.1 F[normal] = 4.9 N
so that the net force parallel to the floor is
∑ F[para] = -4.9 N = (5 kg) a
Solve for the acceleration a :
a = (-4.9 N) / (5 kg) = -0.98 m/s²
Starting with an initial velocity of 5 m/s, the box comes to a stop after time t such that
0 = 5 m/s - (0.98 m/s²) t
⇒ t ≈ 5.1 s
Answer:
E = 2.7 x 10¹⁶ J
Explanation:
The release of energy associated with the mass can be calculated by Einstein's mass-energy relation, as follows:

where,
E = Energy Released = ?
m = mass of material reduced = 0.3 kg
c = speed of light = 3 x 10⁸ m/s
Therefore,

<u>E = 2.7 x 10¹⁶ J</u>
Vt = Vboat - Vriver
Vt = 18 - 2.5 = 15.5 m/s
If the boat's direction is the same as the water, you sum the velocities of the river and the boat .
Explanation:
Let us assume that forces acting at point B are as follows.

= 0 ...... (1)
= 0
= 0 .......... (2)
Hence, formula for allowable normal stress of cable is as follows.

T = 
= 3925 kip
From equation (1),
= -3925
= -3925
= 12877.29 kip
From equation (2), -12877.29 (Cos 60) + W = 0
= 0
W = 6438.64 kip
Thus, we can conclude that greatest weight of the crate is 6438.64 kip.