<span><span>D.</span><span>Measurements are taken in a way that is the same every time.- apex
</span></span>
Answer:
a = - 50 [m/s²]
Explanation:
To solve this problem we simply have to replace the values supplied in the given equation.
Vf = final velocity = 0.5 [m/s]
Vi = initial velocity = 10 [m/s]
s = distance = 100 [m]
a = acceleration [m/s²]
Now replacing we have:
![(0.5)^{2}-(10)^{2} = 2*a*(100)\\0.25-10000=200*a\\200*a=-9999.75\\a =-50 [m/s^{2} ]](https://tex.z-dn.net/?f=%280.5%29%5E%7B2%7D-%2810%29%5E%7B2%7D%20%3D%202%2Aa%2A%28100%29%5C%5C0.25-10000%3D200%2Aa%5C%5C200%2Aa%3D-9999.75%5C%5Ca%20%3D-50%20%5Bm%2Fs%5E%7B2%7D%20%5D)
The negative sign of acceleration means that the ship slows down its velocity in order to land.
Answer:
unit (v) = [ -0.199 i - 0.8955 j + 0.39801 k ]
Explanation:
Given:
v = (-23.2, -104.4, 46.4) m/s
Above expression describes spacecraft's velocity vector v.
Find:
Find unit vector in the direction of spacecraft velocity v.
Solution:
Step 1: Compute magnitude of velocity vector.
mag (v) = sqrt ( 23.2^2 + 104.4^2 + 46.4^2)
mag (v) = 116.58 m/s
Step 2: Compute unit vector unit (v)
unit (v) = vec (v) / mag (v)
unit (v) = [ -23.2 i -104.4 j + 46.4 k ] / 116.58
unit (v) = [ -0.199 i - 0.8955 j + 0.39801 k ]
Density is the mass per unit volume of any object. It is calculated by dividing the mass of an object by its volume. This is:
ρ = m/V
ρ = 4.05 g / 12 mL
ρ = 0.3375 g/mL
<h3>
ρ ≅ 0.338 g/mL</h3>
OPTION A
The correct answer for the question that is being presented above is this one: "a. only from an instructor or supervisor." Ideally, rewards should be given immediately and frequently but <span>only from an instructor or supervisor to show authority. </span>