1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GalinKa [24]
3 years ago
14

What is the bone in your arm

Physics
2 answers:
swat323 years ago
8 0
The humerus<span> is the only bone of the upper arm. It is a long, large bone that extends from the scapula of the shoulder to the </span>ulna<span> and radius of the lower arm. The proximal end of the </span>humerus<span>, known as the head, is a round structure that forms the ball of the ball-and-socket shoulder joint.
</span>I just got it from google normaly i would simplify it but its to simple for me to simplify again hope this helps
Nina [5.8K]3 years ago
7 0
Here are some bones our arm have:
Humerus
Lateral epicondyle
capitulum
Head
neck
raduis
Tuberose

You might be interested in
A small rock is thrown straight up with initial speed v0 from the edge of the roof of a building with height H. The rock travels
Crank

Answer:

v_{avg}=\dfrac{3gH+v_0^2}{v_0+\sqrt{v_0^2+2gH} }

Explanation:

The average velocity is total displacement divided by time:

v_{avg} =\dfrac{D_{tot}}{t}

And in the case of vertical v_{avg}

v_{avg}=\dfrac{y_{tot}}{t}

where y_{tot} is the total vertical displacement of the rock.

The vertical displacement of the rock when it is thrown straight up from height H with initial velocity v_0 is given by:

y=H+v_0t-\dfrac{1}{2} gt^2

The time it takes for the rock to reach maximum height is when y'(t)=0, and it is

t=\frac{v_0}{g}

The vertical distance it would have traveled in that time is

y=H+v_0(\dfrac{v_0}{g} )-\dfrac{1}{2} g(\dfrac{v_0}{g} )^2

y_{max}=\dfrac{2gH+v_0^2}{2g}

This is the maximum height the rock reaches, and after it has reached this height the rock the starts moving downwards and eventually reaches the ground. The distance it would have traveled then would be:

y_{down}=\dfrac{2gH+v_0^2}{2g}+H

Therefore, the total displacement throughout the rock's journey is

y_{tot}=y_{max}+y_{down}

y_{tot} =\dfrac{2gH+v_0^2}{2g}+\dfrac{2gH+v_0^2}{2g}+H

\boxed{y_{tot} =\dfrac{2gH+v_0^2}{g}+H}

Now wee need to figure out the time of the journey.

We already know that the rock reaches the maximum height at

t=\dfrac{v_0}{g},

and it should take the rock the same amount of time to return to the roof, and it takes another t_0 to go from the roof of the building to the ground; therefore,

t_{tot}=2\dfrac{v_0}{g}+t_0

where t_0 is the time it takes the rock to go from the roof of the building to the ground, and it is given by

H=v_0t_0+\dfrac{1}{2}gt_0^2

we solve for t_0 using the quadratic formula and take the positive value to get:

t_0=\dfrac{-v_0+\sqrt{v_0^2+2gH}  }{g}

Therefore the total time is

t_{tot}= 2\dfrac{v_0}{g}+\dfrac{-v_0+\sqrt{v_0^2+2gH}  }{g}

\boxed{t_{tot}= \dfrac{v_0+\sqrt{v_0^2+2gH}  }{g}}

Now the average velocity is

v_{avg}=\dfrac{y_{tot}}{t}

v_{avg}=\dfrac{\frac{2gH+v_0^2}{g}+H }{\frac{v_0+\sqrt{v_0^2+2gH} }{g} }

\boxed{v_{avg}=\dfrac{3gH+v_0^2}{v_0+\sqrt{v_0^2+2gH} } }

5 0
3 years ago
A 70 ft rope hangs from a helicopter above this room. The rope has a mass per unit length of 2 lb/ft. In order to be rescued fro
Mrac [35]

Answer:

The work done to get you safely away from the test is  2.47 X 10⁴ J.

Explanation:

Given;

length of the rope, L = 70 ft

mass per unit length of the rope, μ = 2 lb/ft

your mass, W = 120 lbs

mass of the 70 ft rope  = 2 lb/ft x 70 ft

                                         = 140 lbs.

Total mass to be pulled to the helicopter, M = 120 lbs  + 140 lbs  

                                                                       = 260 lbs

The work done is calculated from work-energy theorem as follows;

W = Mgh

where;

g is acceleration due gravity = 32.17 ft/s²

h is height the total mass is raised = length of the rope = 70 ft

W = 260 Lb x 32.17 ft/s²  x 70 ft

W = 585494 lb.ft²/s²

1 lb.ft²/s² = 0.0421 J

W = 585494 lb.ft²/s²  = 2.47 X 10⁴ J.

Therefore, the work done to get you safely away from the test is  2.47 X 10⁴ J.

4 0
2 years ago
The first law of motion=.....?​
Fed [463]
Every object will remain at rest
7 0
3 years ago
Read 2 more answers
If the out come of a 1.0-kg ball moving at 3.0 m/s is 4.5 kinetic energy what would the kinetic energy be if the mass and speed
Flauer [41]

Answer: KE = 36 J

Explanation: Solution:

KE = 1/2 mv²

= 1/2 ( 2 kg)(6 m/s)²

= 36 J

7 0
3 years ago
What do radio waves and microwaves have in Common?
DerKrebs [107]

What do radio waves and microwaves have in Common?

<u>A) Both are at the ideological the spectrum that has the lowest frequency. </u>

B) Both are at the spectrum that has the shortest wavelengths.

C) Both have higher frequencies than visible light.

3 0
3 years ago
Other questions:
  • A ball of mass m and radius R is both sliding and spinning on a horizontal surface so that its rotational kinetic energy equals
    11·1 answer
  • Need some Help please
    15·1 answer
  • An object, initially at rest moves 250m in 17s. What is it's acceleration?
    6·1 answer
  • A middle-aged man typically has poorer hearing than a middle-aged woman. In one case a woman can just begin to hear a musical to
    7·1 answer
  • Air of temperature T[infinity] = 27 °C is being used to cool an engine. Consider a single cooling fin at a temperature of Ts = 5
    13·1 answer
  • I need help on 4 and 5 please
    8·1 answer
  • A 4.88 x 10-6 C charge moves 265 m/s
    7·2 answers
  • A ball rotates on a string as shown below.
    8·1 answer
  • An 80-kg football player travels to the right at 8 m/s and a 120-kg player on the opposite team travels to the left at 4.0 m/s.
    5·1 answer
  • Cold air holds less water than warm air.<br> True<br> False
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!