Answer:
<em>2.78m/s²</em>
Explanation:
Complete question:
<em>A box is placed on a 30° frictionless incline. What is the acceleration of the box as it slides down the incline when the co-efficient of friction is 0.25?</em>
According to Newton's second law of motion:

Where:
is the coefficient of friction
g is the acceleration due to gravity
Fm is the moving force acting on the body
Ff is the frictional force
m is the mass of the box
a is the acceleration'
Given

Required
acceleration of the box
Substitute the given parameters into the resulting expression above:
Recall that:

9.8sin30 - 0.25(9.8)cos30 = ax
9.8(0.5) - 0.25(9.8)(0.866) = ax
4.9 - 2.1217 = ax
ax = 2.78m/s²
<em>Hence the acceleration of the box as it slides down the incline is 2.78m/s²</em>