Answer:
1) a = -1 m/s²
2) v = 12 m/s
Explanation:
Given,
The initial velocity of the object, u = 15 m/s
The final velocity of the object, v = 10 m/s
The time taken by the object to travel is, t = 5 s
Using the first equation of motion
<em>v = u + at</em>
a = (v - u) / t
Substituting the values
a = (10 - 15) / 5
= -1 m/s²
The negative sign indicates the body is decelerating
The acceleration of the object is, a = -1 m/s²
The speed of the object after 2 seconds
From the above equations of motion
v = 15 + (-1) 2
= 12 m/s
Hence, the speed of the object after 2 seconds is, v = 12 m/s
Answer: C. Soft drink with both ice and carbonation
Explanation: i know its C. because i have had this problem before
The height to which the weight-watcher must climb to work off the equivalent 991 (food) Calories is 0.59 Km
<h3>How to determine the energy. </h3>
1 food calorie = 103 calories
Therefore,
991 food calories = 991 × 103
991 food calories = 102073 calories
Multiply by 4.2 to express in joule (J)
991 food calories = 102073 × 4.2
991 food calories = 428706.6 J
<h3>How to determine the height </h3>
- Energy (E) = 428706.6 J
- Mass (m) = 73.9 kg
- Acceleration due to gravity (g) = 9.8 m/s²
E = mgh
Divide both side by mg
h = E / mg
h = 428706.6 / (73.9 × 9.8)
h = 591.95 m
Divide by 1000 to express in km
h = 591.95 / 1000
h = 0.59 Km
Learn more about energy:
brainly.com/question/10703928
in the case of beryllium, a light metal, only the beryllium-9 isotope is stable with its 9 nucleons (i.e. 4 protons and 5 neutrons)
Hope this helps so sorry if it does not help
Answer: b) pointed toward and parallel to the member.
Explanation:
It is shown in the picture attached