Increase in temperature of water = 0.53 °C
Explanation:
Change in mechanical energy = Potential energy
Potential energy = mgh
Mass, m = Mass of 1 L water = 1 kg
Acceleration due to gravity, g = 9.81 m/s²
Height, h = 225 m
Potential energy = 1 x 9.81 x 225 = 2207.25 J
Because of this 2207.25 J water gets heated.
Heat energy, E = mcΔT
Mass, m = Mass of 1 L water = 1 kg
Specific heat of water, c = 4200 J/kg/C
Energy, E = 2207.25 J
Change in temperature, ΔT = ?
Substituting
2207.25 = 1 x 4200 x ΔT
ΔT = 0.53 °C
Increase in temperature of water = 0.53 °C
There will be no way that to happen aton is a positive charge
Answer:
Spring C
Explanation:
According to Hooke's law, a force require to compress or extend a spring is directly proportional to the distance from its mean position.
The force of compression or expansion of the spring is given by the formula,
F = k x
Where,
k - spring constant. It is the constant value of the particular spring
x - distance of expansion or compression from mean position.
The x value of different spring,
A = 25 cm
B = 10 cm
C = 100 cm
D = 1 cm
The highest value of x for the same mass has the smallest spring constant according to the equation.
Hence, C has the smallest spring constant.
The correct answer for the question that is being presented above is this one: "a. the pressure decreases." As the speed of a fluid increases, the pressure decreases." The relationship of the speed and the pressure is inversely proportional. As the pressure increases, the speed decreases.
Answer:
1kg steam will have the maximum energy