When adding a solute to the solvent, the solution will then boil at a point much higher than the solvent itself. Therefore, it would take much longer for the solution to boil. Among the choices, the correct answer would be B. The water will boil at a higher temperature.
The potential energy of the spring is 6.75 J
The elastic potential energy stored in the spring is given by the equation:
where;
k is the spring constant
x is the compression/stretching of the string
In this problem, we have the spring as follows:
k = 150 N/m is the spring constant
x = 0.3 m is the compression
Substituting in the equation, we get
Therefore. the elastic potential energy stored in the spring is 6.75J .
Learn more about potential energy here:
brainly.com/question/10770261
#SPJ4
Answer:
<h2><u>Constant</u></h2>
Explanation:
Please don't comment in this question's comment box
<h2>Thanks</h2>
Well, it depends. Your latitude on Earth--that is, how close you are to the equator--and the time of year make a difference. I'll explain why. Your motion is made up of four pieces: the rotation of the Earth on its axis, the motion of the Earth around the Sun, the Sun's orbit about the center of the galaxy, and the motion of the whole galaxy.
Answer:
He can return to the spacecraft by sacrificing some of the tools employing the principle of conservation of momentum.
Explanation:
By carefully evaluating his direction back to the ship, the astronaut can throw some of his tools in the opposite direction to that. On throwing those tools of a certain mass, they travel at a certain velocity giving him velocity in the form of recoil in the opposite direction of the velocity of the tools. This is same as a gun and bullet recoil momentum conservation. It is also the principle on which the operational principles of their maneuvering unit is designed.