Answer:
snow is 64.638 kg / hr
Explanation:
Given data
wide w = 21 feet
long L = 20 ft
area A = 1350 square foot
mass of snow m = 1.90 mg
to find out
snow in kilograms / hour
solution
we will find snow in kg
so we apply formula that is
snow kg / hour = w × L ×A × m × 60/10^6
put all value we get snow
snow = 21 × 20 × 1350 × 1.90 × 60/10^6
snow = 420 × 1350 × 1.90 × 60/10^6
snow = 1077300 × 60/10^6
snow = 64.638
hence snow is 64.638 kg / hr
Answer:
a) Maximum speed = 25.28 m/s
b) Total time = 27.27 s
c) Total distance traveled = 402.43 m
Explanation:
a) Maximum speed is obtained after the end of acceleration
v = u + at
v = 13.5 + 1.9 x 6.2 = 25.28 m/s
Maximum speed = 25.28 m/s
b) We have maximum speed = 25.28 m/s, then it decelerates 1.2 m/s² until it stops.
v = u + at
0 = 25.28 - 1.2 t
t = 21.07 s
Total time = 6.2 + 21.07 = 27.27 s
c) Distance traveled for the first 6.2 s
s = ut + 0.5 at²
s = 13.5 x 6.2 + 0.5 x 1.9 x 6.2² = 120.22 m
Distance traveled for the second 21.07 s
s = ut + 0.5 at²
s = 25.28 x 21.07 - 0.5 x 1.2 x 21.07² = 282.21 m
Total distance traveled = 120.22 + 282.21 = 402.43 m
Answer:
273 Kelvin
Explanation:
If -273 Celsius is 0 Kelvin, then 273 Kelvin will be 0 Celsius.
Answer:
The velocity of the hay bale is - 0.5 ft/s and the acceleration is 
Solution:
As per the question:
Constant velocity of the horse in the horizontal, 
Distance of the horse on the horizontal axis, x = 10 ft
Vertical distance, y = 20 ft
Now,
Apply Pythagoras theorem to find the length:


Now,
(1)
Differentiating equation (1) w.r.t 't':


where
= Rate of change of displacement along the horizontal
= Rate of change of displacement along the vertical
= velocity along the x-axis.
= velocity along the y-axis



Acceleration of the hay bale is given by the kinematic equation:




