Answer : The molar mass of unknown substance is, 39.7 g/mol
Explanation : Given,
Mass of unknown substance = 9.56 g
Volume of solution = 100.0 mL
Molarity = 2.41 M
Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.
Formula used :

Now put all the given values in this formula, we get:


Therefore, the molar mass of unknown substance is, 39.7 g/mol
Chromatography is used in purification. Drugs analysts may use the technique to separate the active molecule in a drug molecule, for efficacy or toxicity analysis, from the other drug components.
Explanation:
Chromatography is used to separate a mixture of different components based on the size of their molecules. In liquid chromatography, the mixture is dissolved in a solvent that acts as the mobile phase and then passed along a stationary phase with different kinds of pores, As the mixture passes through the pores, their different components are separated because they take different times to pass through the stationary phase because of their different rates in passing through the pores.
In gas chromatography, a gas is used as a mobile phase while a liquid is used as the stationary phase.
Learn More:
For more on chromatography check out;
brainly.com/question/13232854
#LearnWithBrainly
1) Find the number of mols of HCl in 5.2 liters of 4.0M solution:
n = M*V(L) = 4.0 mol/L * 5.2 L = 20.8 mol
2) Find the number of mols of Mg that will react with 20.8 mol of HCl, using the coefficients of the balanced equation
[1mol Mg / 2 mol HCl] * 20.8 mol HCl = 10.4 mol Mg
3) Transform mol to mass using the atomic mass:
10.4 mol Mg * 24.3 g/mol = 252.7 g of Mg.
First, let us calculate the moles of solute or sodium
bicarbonate is in the 1 ml solution.
<span>moles = 1 mL * (1 g
/ 9 mL) = 0.11 moles</span>
The molar mass of sodium bicarbonate is 84 g/mol,
therefore the mass is:
mass = 0.11 moles * 84 g/mol
<span>mass = 9.33 g</span>