Answer
2.0 x 10²³ molecules.
Explanation
Given:
The number of moles of theobromide measured out = 0.333 moles.
MM of theobromide = 180.8 g/mol
What to find:
The number of molecules of theobromide the student measured.
To go from moles to molecules, multiply the number of moles by Avogadro's number.
The Avogadro's number = 6.02 x 10²³
1 mole of theobromide contains 6.02 x 10²³ molecules.
So, 0.333 moles of theobromide measured out will have (0.333 x 6.02 x 10²³) = 2.0 x 10²³ molecules.
Answer:
8.7 mol Al
Explanation:
You have the compound Al₂Si₄O₁₀(OH)₂. Within the compound, you have atoms. You can tell how many atoms there are by looking at the subscript. You have 2 aluminum atoms, giving you 8.7 moles of aluminum.
4.35 × 2 = 8.7
Answer:

Explanation:
Hello,
In this case, we can solve this problem by noticing that the heat lost by the warm water is gained by the ice in order to melt it:

In such a way, the cooling of water corresponds to specific heat and the melting of ice to sensible heat and specific heat also that could be represented as follows:

Thus, specific heat of water is 4.18 J/g°C, heat of melting is 334 J/g and specific heat of ice is 2.04 J/g°C, thus, we can compute the final temperature as shown below:

Best regards.
sometimes I think of plss, and it reminds me of you *bites lip*