1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
madam [21]
3 years ago
14

wide tube that extends down from the bag of solution, which hangs from a pole so that the fluid level is 90.0 cm above the needl

e. The inner radius of the needle is 0.200 mm. The top of the fluid is exposed to the atmosphere, and the flow rate of the fluid (which has a density of 1025 kg/m^3 and a viscosity of 0.0010 Pass) through the needle is 0.200 L/h. What is the average gauge pressure inside the vein where the needle is? Use g = 9.8 m/s^2. _______ Pa
Physics
1 answer:
Bingel [31]3 years ago
6 0

Answer:

The average gauge pressure inside the vein is 110270.58 Pa

Explanation:

This question can be solved using the Bernoulli's Equation. First, in order to determine the outlet pressure of the needle, we need to find the total pressure exerted by the atmosphere and the fluid.

P_f: fluid's\ pressure\\P_f= \rho g h=1025\frac{kg}{m^3} \times 9.8 \frac{m}{s^2} \times 0.9 m=9040.5 Pa \\P_T: total\ pressure\\P_T=P_{atm}+P_f\\P_T=101325 Pa + 9040.5 Pa=110275.5 Pa\\

Then, we have to find the fluid's outlet velocity with the transversal area of the needle, as follows:

S: transversal\ area \\S= \pi r^2=\pi (0.200 \times 10^{-3})^2=5.65 \times 10^{-7} m^2\\v=\frac{F}{S}=\frac{5.55 \times 10^{-8} \frac{m^3}{s}}{5.65 \times 10^{-7} m^2}=0.98\times 10^{-1} \frac{m}{s}

As we have all the information, we can complete the Bernoulli's expression and solve to find the outlet pressure as follows:

P_T-P_{out}=\frac{1}{2} \rho v^2\\P_{out}=P_T-\frac{1}{2} \rho v^2=110275.5 Pa-\frac{1}{2} 1025\frac{kg}{m^3} (0.98\times 10^{-1} \frac{m}{s})^2=110275.5 Pa-4.92 Pa =110270.58 Pa

You might be interested in
An average hole drift velocity of 103 cm/sec results when 2 V is applied across a 1 cm long semiconductor bar. What is the hole
Helga [31]

Answer:

ε = 2 V/cm

Explanation:

To calculate the mobility inside this bar, we just need to apply the expression that let us determine the mobility. This expression is the following:

ε = ΔV / L

Where:

ε: Hole mobility inside the bar

ΔV: voltage applied in the bar

L: Length of the bar

We already have the voltage and the length so replacing in the above expression we have:

ε = 2 V / 1 cm

<h2>ε = 2 V/cm</h2><h2></h2>

The data of the speed can be used for further calculations, but in this part its not necessary.

Hope this helps

8 0
3 years ago
Using only one management style with all people is the most effective leadership technique for any organization.
Softa [21]

the answer for this is false

4 0
3 years ago
A remote-controlled car is moving in a vacant parking lot. The velocity of the car as a function of time is given by υ⃗ =[5.00m/
Reptile [31]
It would possibly be [7.00m/s(0.5613m/s)
8 0
3 years ago
Arocket launches at an angle of 33.6 degrees from the horizontal at a
babymother [125]

Answer:

Y component = 32.37

Explanation:

Given:

Angle of projection of the rocket is, \theta=33.6

Initial velocity of the rocket is, u=58.5

A vector at an angle \theta with the horizontal can be resolved into mutually perpendicular components; one along the horizontal direction and the other along the vertical direction.

If a vector 'A' makes angle \theta with the horizontal, then the horizontal and vertical components are given as:

A_x=A\cos \theta(\textrm{Horizontal or X component})\\A_y=A\sin \theta(\textrm{Vertical or Y component})

Here, as the velocity is a vector quantity and makes an angle of 33.6 with the horizontal, its Y component is given as:

u_y=u\sin \theta

Plug in the given values and solve for u_y. This gives,

u_y=(58.5)(\sin 33.6)\\u_y=58.5\times 0.55339\\u_y=32.373\approx32.37(\textrm{Rounded to two decimal places})

Therefore, the Y component of initial velocity is 32.37.

4 0
2 years ago
Which of the following statements best describes an electromagnetic wave with a long wavelength?
zmey [24]
It has a high frenquency and can only travel through a medium
5 0
3 years ago
Other questions:
  • In an experiment if doubling the manipulated variable results in doubling of the responding variable the relationship between th
    14·1 answer
  • An astronaut takes an iPod onto the space shuttle. An identical iPod remains on Earth. Which statement about the pull of Earth's
    13·1 answer
  • The latent heat of fusion of alcohol is 50 kcal/kg and its melting point is -54oC. It has a specific heat of 0.60 in its liquid
    12·1 answer
  • Elemental analysis of the unknown gas from part a revealed that it is 30.45% n and 69.55% o by mass. What is the molecular formu
    11·1 answer
  • 1. ________________electricity is the type of electricity commonly used in homes and businesses throughout the world.
    6·1 answer
  • Determine the pressure point in a liquid container within a pool. The height of the liquid column is 9 m, The density of the liq
    8·1 answer
  • Why is temperature scalar?
    11·1 answer
  • Which statement best describes the difference between atoms and molecules
    10·2 answers
  • Hello!
    13·1 answer
  • . A certain sample of metal has a mass of 3 kg and a volume of 250 cm3. What is its density?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!