Answer:
B. moving faster than car B, but not necessarily accelerating
Explanation:
Velocity is the speed of something. So car A's velocity is greater than car B but does not mean car A is accelerating.
-- The string is 1 m long. That's the radius of the circle that the mass is
traveling in. The circumference of the circle is (π) x (2R) = 2π meters .
-- The speed of the mass is (2π meters) / (0.25 sec) = 8π m/s .
-- Centripetal acceleration is V²/R = (8π m/s)² / (1 m) = 64π^2 m/s²
-- Force = (mass) x (acceleration) = (1kg) x (64π^2 m/s²) =
64π^2 kg-m/s² = 64π^2 N = about <span>631.7 N .
</span>That's it. It takes roughly a 142-pound pull on the string to keep
1 kilogram revolving at a 1-meter radius 4 times a second !<span>
</span>If you eased up on the string, the kilogram could keep revolving
in the same circle, but not as fast.
You also need to be very careful with this experiment, and use a string
that can hold up to a couple hundred pounds of tension without snapping.
If you've got that thing spinning at 4 times per second and the string breaks,
you've suddenly got a wild kilogram flying away from the circle in a straight
line, at 8π meters per second ... about 56 miles per hour ! This could definitely
be hazardous to the health of anybody who's been watching you and wondering
what you're doing.
The bigger one as the luminosity has a direct exponential relationship with R of the star so the star which has more surface area will be more luminous than the smaller one
Explanation:
<em>"The accuracy of a potentiometer can be increased by decreasing the potential gradient across the potentiometer wire, and this can be achieved by increasing the length"</em>
<em />
<u>The factors that are affecting/limiting the accuracy of the potentiometer are:
</u>
-
The specific resistance of the material of the potentiometer wire.
- The potential gradient
- The current passing through the potentiometer wire.
- Area of a cross-section of the wire
- Internal temperature.
<u>The objective of reversing the terminals of the cell</u>
If the jockey of the potentiometer is pressed for a long time, joule heating sets in, so that reversing the terminals of the potentiometer will prevent the resistance due to joule heat from being added to the measured resistance, ultimately preventing unwanted resistance